
Oracle Database 11g: SQL 
Fundamentals I

Volume II • Student Guide

D49996GC20

Edition 2.0

October 2009

D63148



Copyright © 2009, Oracle.  All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and 
other intellectual property laws. You may copy and print this document solely for your 
own use in an Oracle training course. The document may not be modified or altered in 
any way. Except where your use constitutes "fair use" under copyright law, you may 
not use, share, download, upload, copy, print, display, perform, reproduce, publish, 
license, post, transmit, or distribute this document in whole or in part without the 
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you 
find any problems in the document, please report them in writing to: Oracle University, 
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not 
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using 
the documentation on behalf of the United States Government, the following notice is 
applicable: 

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or 
disclose these training materials are restricted by the terms of the applicable Oracle 
license agreement and/or the applicable U.S. Government contract. 

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other 
names may be trademarks of their respective owners.

Authors

Salome Clement
Brian Pottle
Puja Singh

Technical Contributors 
and Reviewers

Anjulaponni Azhagulekshmi
Clair Bennett
Zarko Cesljas
Yanti Chang
Gerlinde Frenzen
Steve Friedberg
Joel Goodman
Nancy Greenberg
Pedro Neves
Surya Rekha
Helen Robertson
Lauran Serhal
Tulika Srivastava

Editors

Aju Kumar
Arijit Ghosh

Graphic Designer

Rajiv Chandrabhanu

Publishers

Pavithran Adka

Veena Narasimhan



 iii

Contents 
 

 

 

 

I Introduction 

Lesson Objectives   I-2 

Lesson Agenda   I-3 

Course Objectives   I-4 

Course Agenda   I-5 

Appendixes Used in the Course   I-7 

Lesson Agenda   I-8 

Oracle Database 11g: Focus Areas   I-9 

Oracle Database 11g   I-10 

Oracle Fusion Middleware   I-12 

Oracle Enterprise Manager Grid Control   I-13 

Oracle BI Publisher   I-14 

Lesson Agenda   I-15 

Relational and Object Relational Database Management Systems   I-16 

Data Storage on Different Media   I-17 

Relational Database Concept   I-18 

Definition of a Relational Database   I-19 

Data Models   I-20 

Entity Relationship Model   I-21 

Entity Relationship Modeling Conventions   I-23 

Relating Multiple Tables   I-25 

Relational Database Terminology   I-27 

Lesson Agenda   I-29 

Using SQL to Query Your Database   I-30 

SQL Statements   I-31 

Development Environments for SQL   I-32 

Lesson Agenda   I-33 

Human Resources (HR) Schema   I-34 

Tables Used in the Course   I-35 

Lesson Agenda   I-36 

Oracle Database 11g Documentation   I-37 

Additional Resources   I-38 

Summary   I-39 

Practice I: Overview   I-40 

 

 



 iv

1 Retrieving Data Using the SQL SELECT Statement 

Objectives   1-2 

Lesson Agenda   1-3 

Capabilities of SQL SELECT Statements   1-4 

Basic SELECT Statement   1-5 

Selecting All Columns   1-6 

Selecting Specific Columns   1-7 

Writing SQL Statements   1-8 

Column Heading Defaults   1-9 

Lesson Agenda   1-10 

Arithmetic Expressions   1-11 

Using Arithmetic Operators   1-12 

Operator Precedence   1-13 

Defining a Null Value   1-14 

Null Values in Arithmetic Expressions   1-15 

Lesson Agenda   1-16 

Defining a Column Alias   1-17 

Using Column Aliases   1-18 

Lesson Agenda   1-19 

Concatenation Operator   1-20 

Literal Character Strings   1-21 

Using Literal Character Strings   1-22 

Alternative Quote (q) Operator   1-23 

Duplicate Rows   1-24 

Lesson Agenda   1-25 

Displaying the Table Structure   1-26 

Using the DESCRIBE Command   1-27 

Quiz   1-28 

Summary   1-29 

Practice 1: Overview   1-30 

 

2 Restricting and Sorting Data 

Objectives   2-2 

Lesson Agenda   2-3 

Limiting Rows Using a Selection   2-4 

Limiting the Rows That Are Selected   2-5 

Using the WHERE Clause   2-6 

Character Strings and Dates   2-7 

Comparison Operators   2-8 

Using Comparison Operators   2-9 



 v

Range Conditions Using the BETWEEN Operator   2-10 

Membership Condition Using the IN Operator   2-11 

Pattern Matching Using the LIKE Operator   2-12 

Combining Wildcard Characters   2-13 

Using the NULL Conditions   2-14 

Defining Conditions Using the Logical Operators   2-15 

Using the AND Operator   2-16 

Using the OR Operator   2-17 

Using the NOT Operator   2-18 

Lesson Agenda   2-19 

Rules of Precedence   2-20 

Lesson Agenda   2-22 

Using the ORDER BY Clause   2-23 

Sorting   2-24 

Lesson Agenda   2-26 

Substitution Variables   2-27 

Using the Single-Ampersand Substitution Variable   2-29 

Character and Date Values with Substitution Variables   2-31 

Specifying Column Names, Expressions, and Text   2-32 

Using the Double-Ampersand Substitution Variable   2-33 

Lesson Agenda   2-34 

Using the DEFINE Command   2-35 

Using the VERIFY Command   2-36 

Quiz   2-37 

Summary   2-38 

Practice 2: Overview   2-39 

 

3 Using Single-Row Functions to Customize Output 

Objectives   3-2 

Lesson Agenda   3-3 

SQL Functions   3-4 

Two Types of SQL Functions   3-5 

Single-Row Functions   3-6 

Lesson Agenda   3-8 

Character Functions   3-9 

Case-Conversion Functions   3-11 

Using Case-Conversion Functions   3-12 

Character-Manipulation Functions   3-13 

Using the Character-Manipulation Functions   3-14 

Lesson Agenda   3-15 



 vi

Number Functions   3-16 

Using the ROUND Function   3-17 

Using the TRUNC Function   3-18 

Using the MOD Function   3-19 

Lesson Agenda   3-20 

Working with Dates   3-21 

RR Date Format   3-22 

Using the SYSDATE Function   3-24 

Arithmetic with Dates   3-25 

Using Arithmetic Operators with Dates   3-26 

Lesson Agenda   3-27 

Date-Manipulation Functions   3-28 

Using Date Functions   3-29 

Using ROUND and TRUNC Functions with Dates   3-30 

Quiz   3-31 

Summary   3-32 

Practice 3: Overview   3-33 

 

4 Using Conversion Functions and Conditional Expressions 

Objectives   4-2 

Lesson Agenda   4-3 

Conversion Functions   4-4 

Implicit Data Type Conversion   4-5 

Explicit Data Type Conversion   4-7 

Lesson Agenda   4-10 

Using the TO_CHAR Function with Dates   4-11 

Elements of the Date Format Model   4-12 

Using the TO_CHAR Function with Dates   4-16 

Using the TO_CHAR Function with Numbers   4-17 

Using the TO_NUMBER and TO_DATE Functions   4-20 

Using the TO_CHAR and TO_DATE Function with the RR Date Format   4-22 

Lesson Agenda   4-23 

Nesting Functions   4-24 

Nesting Functions: Example 1   4-25 

Nesting Functions: Example 2   4-26 

Lesson Agenda   4-27 

General Functions   4-28 

NVL Function   4-29 

Using the NVL Function   4-30 

Using the NVL2 Function   4-31 



 vii

Using the NULLIF Function   4-32 

Using the COALESCE Function   4-33 

Lesson Agenda   4-36 

Conditional Expressions   4-37 

CASE Expression   4-38 

Using the CASE Expression   4-39 

DECODE Function   4-40 

Using the DECODE Function   4-41 

Quiz   4-43 

Summary   4-44 

Practice 4: Overview   4-45 

 

5 Reporting Aggregated Data Using the Group Functions 

Objectives   5-2 

Lesson Agenda   5-3 

What Are Group Functions?   5-4 

Types of Group Functions   5-5 

Group Functions: Syntax   5-6 

Using the AVG and SUM Functions   5-7 

Using the MIN and MAX Functions   5-8 

Using the COUNT Function   5-9 

Using the DISTINCT Keyword   5-10 

Group Functions and Null Values   5-11 

Lesson Agenda   5-12 

Creating Groups of Data   5-13 

Creating Groups of Data: GROUP BY Clause Syntax   5-14 

Using the GROUP BY Clause   5-15 

Grouping by More Than One Column   5-17 

Using the GROUP BY Clause on Multiple Columns   5-18 

Illegal Queries Using Group Functions   5-19 

Restricting Group Results   5-21 

Restricting Group Results with the HAVING Clause   5-22 

Using the HAVING Clause   5-23 

Lesson Agenda   5-25 

Nesting Group Functions   5-26 

Quiz   5-27 

Summary   5-28 

Practice 5: Overview   5-29 

 

 



 viii

6 Displaying Data from Multiple Tables Using Joins 

Objectives   6-2 

Lesson Agenda   6-3 

Obtaining Data from Multiple Tables   6-4 

Types of Joins   6-5 

Joining Tables Using SQL: 1999 Syntax   6-6 

Qualifying Ambiguous Column Names   6-7 

Lesson Agenda   6-8 

Creating Natural Joins   6-9 

Retrieving Records with Natural Joins   6-10 

Creating Joins with the USING Clause   6-11 

Joining Column Names   6-12 

Retrieving Records with the USING Clause   6-13 

Using Table Aliases with the USING Clause   6-14 

Creating Joins with the ON Clause   6-15 

Retrieving Records with the ON Clause   6-16 

Creating Three-Way Joins with the ON Clause   6-17 

Applying Additional Conditions to a Join   6-18 

Lesson Agenda   6-19 

Joining a Table to Itself   6-20 

Self-Joins Using the ON Clause   6-21 

Lesson Agenda   6-22 

Nonequijoins   6-23 

Retrieving Records with Nonequijoins   6-24 

Lesson Agenda   6-25 

Returning Records with No Direct Match Using OUTER Joins   6-26 

INNER Versus OUTER Joins   6-27 

LEFT OUTER JOIN   6-28 

RIGHT OUTER JOIN   6-29 

FULL OUTER JOIN   6-30 

Lesson Agenda   6-31 

Cartesian Products   6-32 

Generating a Cartesian Product   6-33 

Creating Cross Joins   6-34 

Quiz   6-35 

Summary   6-36 

Practice 6: Overview   6-37 



 ix

7 Using Subqueries to Solve Queries 

Objectives   7-2 

Lesson Agenda   7-3 

Using a Subquery to Solve a Problem   7-4 

Subquery Syntax   7-5 

Using a Subquery   7-6 

Guidelines for Using Subqueries   7-7 

Types of Subqueries   7-8 

Lesson Agenda   7-9 

Single-Row Subqueries   7-10 

Executing Single-Row Subqueries   7-11 

Using Group Functions in a Subquery   7-12 

HAVING Clause with Subqueries   7-13 

What Is Wrong with This Statement?   7-14 

No Rows Returned by the Inner Query   7-15 

Lesson Agenda   7-16 

Multiple-Row Subqueries   7-17 

Using the ANY Operator in Multiple-Row Subqueries   7-18 

Using the ALL Operator in Multiple-Row Subqueries   7-19 

Using the EXISTS Operator   7-20 

Lesson Agenda   7-21 

Null Values in a Subquery   7-22 

Quiz   7-24 

Summary   7-25 

Practice 7: Overview   7-26 

 

8 Using the Set Operators 

Objectives   8-2 

Lesson Agenda   8-3 

Set Operators   8-4 

Set Operator Guidelines   8-5 

Oracle Server and Set Operators   8-6 

Lesson Agenda   8-7 

Tables Used in This Lesson   8-8 

Lesson Agenda   8-12 

UNION Operator   8-13 

Using the UNION Operator   8-14 

UNION ALL Operator   8-16 

Using the UNION ALL Operator   8-17 

Lesson Agenda   8-18 



 x

INTERSECT Operator   8-19 

Using the INTERSECT Operator   8-20 

Lesson Agenda   8-21 

MINUS Operator   8-22 

Using the MINUS Operator   8-23 

Lesson Agenda   8-24 

Matching the SELECT Statements   8-25 

Matching the SELECT Statement: Example   8-26 

Lesson Agenda   8-27 

Using the ORDER BY Clause in Set Operations   8-28 

Quiz   8-29 

Summary   8-30 

Practice 8: Overview   8-31 

 

9 Manipulating Data 

Objectives   9-2 

Lesson Agenda   9-3 

Data Manipulation Language   9-4 

Adding a New Row to a Table   9-5 

INSERT Statement Syntax   9-6 

Inserting New Rows   9-7 

Inserting Rows with Null Values   9-8 

Inserting Special Values   9-9 

Inserting Specific Date and Time Values   9-10 

Creating a Script   9-11 

Copying Rows from Another Table   9-12 

Lesson Agenda   9-13 

Changing Data in a Table   9-14 

UPDATE Statement Syntax   9-15 

Updating Rows in a Table   9-16 

Updating Two Columns with a Subquery   9-17 

Updating Rows Based on Another Table   9-18 

Lesson Agenda   9-19 

Removing a Row from a Table   9-20 

DELETE Statement   9-21 

Deleting Rows from a Table   9-22 

Deleting Rows Based on Another Table   9-23 

TRUNCATE Statement   9-24 

Lesson Agenda   9-25 

Database Transactions   9-26 



 xi

Database Transactions: Start and End   9-27 

Advantages of COMMIT and ROLLBACK Statements   9-28 

Explicit Transaction Control Statements   9-29 

Rolling Back Changes to a Marker   9-30 

Implicit Transaction Processing   9-31 

State of the Data Before COMMIT or ROLLBACK   9-33 

State of the Data After COMMIT   9-34 

Committing Data   9-35 

State of the Data After ROLLBACK   9-36 

State of the Data After ROLLBACK: Example   9-37 

Statement-Level Rollback   9-38 

Lesson Agenda   9-39 

Read Consistency   9-40 

Implementing Read Consistency   9-41 

Lesson Agenda   9-42 

FOR UPDATE Clause in a SELECT Statement   9-43 

FOR UPDATE Clause: Examples   9-44 

Quiz   9-46 

Summary   9-47 

Practice 9: Overview   9-48 

 

10 Using DDL Statements to Create and Manage Tables 

Objectives   10-2 

Lesson Agenda   10-3 

Database Objects   10-4 

Naming Rules   10-5 

Lesson Agenda   10-6 

CREATE TABLE Statement   10-7 

Referencing Another User’s Tables   10-8 

DEFAULT Option   10-9 

Creating Tables   10-10 

Lesson Agenda   10-11 

Data Types   10-12 

Datetime Data Types   10-14 

Lesson Agenda   10-15 

Including Constraints   10-16 

Constraint Guidelines   10-17 

Defining Constraints   10-18 

NOT NULL Constraint   10-20 

UNIQUE Constraint   10-21 



 xii

PRIMARY KEY Constraint   10-23 

FOREIGN KEY Constraint   10-24 

FOREIGN KEY Constraint: Keywords   10-26 

CHECK Constraint   10-27 

CREATE TABLE: Example   10-28 

Violating Constraints   10-29 

Lesson Agenda   10-31 

Creating a Table Using a Subquery   10-32 

Lesson Agenda   10-34 

ALTER TABLE Statement   10-35 

Read-Only Tables   10-36 

Lesson Agenda   10-37 

Dropping a Table   10-38 

Quiz   10-39 

Summary   10-40 

Practice 10: Overview   10-41 

 

11 Creating Other Schema Objects 

Objectives   11-2 

Lesson Agenda   11-3 

Database Objects   11-4 

What Is a View?   11-5 

Advantages of Views   11-6 

Simple Views and Complex Views   11-7 

Creating a View   11-8 

Retrieving Data from a View   11-11 

Modifying a View   11-12 

Creating a Complex View   11-13 

Rules for Performing DML Operations on a View   11-14 

Using the WITH CHECK OPTION Clause   11-17 

Denying DML Operations   11-18 

Removing a View   11-20 

Practice 11: Overview of Part 1   11-21 

Lesson Agenda   11-22 

Sequences   11-23 

CREATE SEQUENCE Statement: Syntax   11-25 

Creating a Sequence   11-26 

NEXTVAL and CURRVAL Pseudocolumns   11-27 

Using a Sequence   11-29 

Caching Sequence Values   11-30 



 xiii

Modifying a Sequence   11-31 

Guidelines for Modifying a Sequence   11-32 

Lesson Agenda   11-33 

Indexes   11-34 

How Are Indexes Created?   11-36 

Creating an Index   11-37 

Index Creation Guidelines   11-38 

Removing an Index   11-39 

Lesson Agenda   11-40 

Synonyms   11-41 

Creating a Synonym for an Object   11-42 

Creating and Removing Synonyms   11-43 

Quiz   11-44 

Summary   11-45 

Practice 11: Overview of Part 2   11-46 

 

Appendix A: Practice Solutions 

 

Appendix B: Table Descriptions 

 

Appendix C: Using SQL Developer 

Objectives   C-2 

What Is Oracle SQL Developer?   C-3 

Specifications of SQL Developer   C-4 

SQL Developer 1.5 Interface   C-5 

Creating a Database Connection   C-7 

Browsing Database Objects   C-10 

Displaying the Table Structure   C-11 

Browsing Files   C-12 

Creating a Schema Object   C-13 

Creating a New Table: Example   C-14 

Using the SQL Worksheet   C-15 

Executing SQL Statements   C-18 

Saving SQL Scripts   C-19 

Executing Saved Script Files: Method 1   C-20 

Executing Saved Script Files: Method 2   C-21 

Formatting the SQL Code   C-22 

Using Snippets   C-23 

Using Snippets: Example   C-24 

Debugging Procedures and Functions   C-25 

Database Reporting   C-26 



 xiv

Creating a User-Defined Report   C-27 

Search Engines and External Tools   C-28 

Setting Preferences   C-29 

Resetting the SQL Developer Layout   C-30 

Summary   C-31 

 

Appendix D: Using SQL*Plus 

Objectives   D-2 

SQL and SQL*Plus Interaction   D-3 

SQL Statements Versus SQL*Plus Commands   D-4 

Overview of SQL*Plus   D-5 

Logging In to SQL*Plus   D-6 

Displaying the Table Structure   D-7 

SQL*Plus Editing Commands   D-9 

Using LIST, n, and APPEND   D-11 

Using the CHANGE Command   D-12 

SQL*Plus File Commands   D-13 

Using the SAVE, START Commands   D-14 

SERVEROUTPUT Command   D-15 

Using the SQL*Plus SPOOL Command   D-16 

Using the AUTOTRACE Command   D-17 

Summary   D-18 

 

Appendix E: Using JDeveloper 

Objectives   E-2 

Oracle JDeveloper   E-3 

Database Navigator   E-4 

Creating Connection   E-5 

Browsing Database Objects   E-6 

Executing SQL Statements   E-7 

Creating Program Units   E-8 

Compiling   E-9 

Running a Program Unit   E-10 

Dropping a Program Unit   E-11 

Structure Window   E-12 

Editor Window   E-13 

Application Navigator   E-14 

Deploying Java Stored Procedures   E-15 

 

 



 xv

Publishing Java to PL/SQL   E-16 

How Can I Learn More About JDeveloper 11g?   E-17 

Summary   E-18 

 

Appendix F: Oracle Join Syntax 

Objectives   F-2 

Obtaining Data from Multiple Tables   F-3 

Cartesian Products   F-4 

Generating a Cartesian Product   F-5 

Types of Oracle-Proprietary Joins   F-6 

Joining Tables Using Oracle Syntax   F-7 

Qualifying Ambiguous Column Names   F-8 

Equijoins   F-9 

Retrieving Records with Equijoins   F-10 

Retrieving Records with Equijoins: Example   F-11 

Additional Search Conditions Using the AND Operator   F-12 

Joining More than Two Tables   F-13 

Nonequijoins   F-14 

Retrieving Records with Nonequijoins   F-15 

Returning Records with No Direct Match with Outer Joins   F-16 

Outer Joins: Syntax   F-17 

Using Outer Joins   F-18 

Outer Join: Another Example   F-19 

Joining a Table to Itself   F-20 

Self-Join: Example   F-21 

Summary   F-22 

Practice F: Overview   F-23 

 

Additional Practices and Solutions 

 

Index 

 

 

 

 





Copyright © 2009, Oracle. All rights reserved.

Manipulating Data



Oracle Database 11g: SQL Fundamentals I 9 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the 
following:

• Describe each data manipulation language (DML) 
statement

• Insert rows into a table

• Update rows in a table

• Delete rows from a table

• Control transactions

Objective

In this lesson, you learn how to use the data manipulation language (DML) statements to insert rows 
into a table, update existing rows in a table, and delete existing rows from a table. You also learn 
how to control transactions with the COMMIT, SAVEPOINT, and ROLLBACK statements.



Oracle Database 11g: SQL Fundamentals I 9 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK, 
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement



Oracle Database 11g: SQL Fundamentals I 9 - 4

Copyright © 2009, Oracle. All rights reserved.

Data Manipulation Language

• A DML statement is executed when you:
– Add new rows to a table

– Modify existing rows in a table

– Remove existing rows from a table

• A transaction consists of a collection of DML statements 
that form a logical unit of work.

Data Manipulation Language

Data manipulation language (DML) is a core part of SQL. When you want to add, update, or delete 
data in the database, you execute a DML statement. A collection of DML statements that form a 
logical unit of work is called a transaction. 

Consider a banking database. When a bank customer transfers money from a savings account to a 
checking account, the transaction might consist of three separate operations: decreasing the savings 
account, increasing the checking account, and recording the transaction in the transaction journal. 
The Oracle server must guarantee that all the three SQL statements are performed to maintain the 
accounts in proper balance. When something prevents one of the statements in the transaction from 
executing, the other statements of the transaction must be undone.

Note
• Most of the DML statements in this lesson assume that no constraints on the table are violated. 

Constraints are discussed later in this course. 
• In SQL Developer, click the Run Script icon or press [F5] to run the DML statements. The 

feedback messages will be shown on the Script Output tabbed page.



Oracle Database 11g: SQL Fundamentals I 9 - 5

Copyright © 2009, Oracle. All rights reserved.

Adding a New Row to a Table

DEPARTMENTS 
New 
row

Insert new row
into the

DEPARTMENTS table.

Adding a New Row to a Table

The graphic in the slide illustrates the addition of a new department to the DEPARTMENTS table.



Oracle Database 11g: SQL Fundamentals I 9 - 6

Copyright © 2009, Oracle. All rights reserved.

INSERT Statement Syntax

• Add new rows to a table by using the INSERT statement:

• With this syntax, only one row is inserted at a time.

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);

INSERT Statement Syntax

You can add new rows to a table by issuing the INSERT statement. 

In the syntax:
table Is the name of the table
column Is the name of the column in the table to populate
value Is the corresponding value for the column

Note: This statement with the VALUES clause adds only one row at a time to a table.



Oracle Database 11g: SQL Fundamentals I 9 - 7

Copyright © 2009, Oracle. All rights reserved.

Inserting New Rows

• Insert a new row containing values for each column.

• List values in the default order of the columns in the table.
• Optionally, list the columns in the INSERT clause.

• Enclose character and date values within single quotation 
marks.

INSERT INTO departments(department_id, 
department_name, manager_id, location_id)

VALUES (70, 'Public Relations', 100, 1700);

Inserting New Rows

Because you can insert a new row that contains values for each column, the column list is not 
required in the INSERT clause. However, if you do not use the column list, the values must be listed 
according to the default order of the columns in the table, and a value must be provided for each 
column. 

DESCRIBE departments

For clarity, use the column list in the INSERT clause.
Enclose character and date values within single quotation marks; however, it is not recommended 
that you enclose numeric values within single quotation marks. 



Oracle Database 11g: SQL Fundamentals I 9 - 8

Copyright © 2009, Oracle. All rights reserved.

• Implicit method: Omit the column from the 
column list.

• Explicit method: Specify the NULL keyword in the VALUES
clause.

INSERT INTO departments
VALUES (100, 'Finance', NULL, NULL);

INSERT INTO departments (department_id, 
department_name)

VALUES (30, 'Purchasing');

Inserting Rows with Null Values

Inserting Rows with Null Values

Be sure that you can use null values in the targeted column by verifying the Null status with the 
DESCRIBE command.

The Oracle server automatically enforces all data types, data ranges, and data integrity constraints. 
Any column that is not listed explicitly obtains a null value in the new row. 

Common errors that can occur during user input are checked in the following order: 
• Mandatory value missing for a NOT NULL column
• Duplicate value violating any unique or primary key constraint
• Any value violating a CHECK constraint
• Referential integrity maintained for foreign key constraint 
• Data type mismatches or values too wide to fit in column

Note: Use of the column list is recommended because it makes the INSERT statement more readable 
and reliable, or less prone to mistakes.

Method Description 

Implicit Omit the column from the column list. 

Explicit Specify the NULL keyword in the VALUES list; 
specify the empty string ('') in the VALUES list for character strings 
and dates. 

 



Oracle Database 11g: SQL Fundamentals I 9 - 9

Copyright © 2009, Oracle. All rights reserved.

INSERT INTO employees (employee_id, 
first_name, last_name, 
email, phone_number,
hire_date, job_id, salary, 
commission_pct, manager_id,
department_id)

VALUES (113, 
'Louis', 'Popp', 
'LPOPP', '515.124.4567', 
SYSDATE, 'AC_ACCOUNT', 6900, 
NULL, 205, 110);

Inserting Special Values

The SYSDATE function records the current date and time.

Inserting Special Values 

You can use functions to enter special values in your table. 

The slide example records information for employee Popp in the EMPLOYEES table. It supplies the 
current date and time in the HIRE_DATE column. It uses the SYSDATE function that returns the 
current date and time of the database server. You may also use the CURRENT_DATE function to get 
the current date in the session time zone. You can also use the USER function when inserting rows in 
a table. The USER function records the current username.

Confirming Additions to the Table
SELECT employee_id, last_name, job_id, hire_date, commission_pct
FROM   employees
WHERE  employee_id = 113;



Oracle Database 11g: SQL Fundamentals I 9 - 10

Copyright © 2009, Oracle. All rights reserved.

Inserting Specific Date and Time Values

• Add a new employee.

• Verify your addition.

INSERT INTO employees
VALUES      (114, 

'Den', 'Raphealy', 
'DRAPHEAL', '515.127.4561',
TO_DATE('FEB 3, 1999', 'MON DD, YYYY'),
'SA_REP', 11000, 0.2, 100, 60);

Inserting Specific Date and Time Values

The DD-MON-RR format is generally used to insert a date value. With the RR format, the system 
provides the correct century automatically.

You may also supply the date value in the DD-MON-YYYY format. This is recommended because it 
clearly specifies the century and does not depend on the internal RR format logic of specifying the 
correct century.

If a date must be entered in a format other than the default format (for example, with another century 
or a specific time), you must use the TO_DATE function.

The example in the slide records information for employee Raphealy in the EMPLOYEES table. It 
sets the HIRE_DATE column to be February 3, 1999. 



Oracle Database 11g: SQL Fundamentals I 9 - 11

Copyright © 2009, Oracle. All rights reserved.

INSERT INTO departments 

(department_id, department_name, location_id)

VALUES     (&department_id, '&department_name',&location);

Creating a Script 

• Use the & substitution in a SQL statement to prompt for 
values.

• & is a placeholder for the variable value.

Creating a Script

You can save commands with substitution variables to a file and execute the commands in the file. 
The example in the slide records information for a department in the DEPARTMENTS table. 

Run the script file and you are prompted for input for each of the ampersand (&) substitution 
variables. After entering a value for the substitution variable, click the OK button. The values that 
you input are then substituted into the statement. This enables you to run the same script file over and 
over, but supply a different set of values each time you run it.



Oracle Database 11g: SQL Fundamentals I 9 - 12

Copyright © 2009, Oracle. All rights reserved.

Copying Rows 
from Another Table

• Write your INSERT statement with a subquery:

• Do not use the VALUES clause.

• Match the number of columns in the INSERT clause to 
those in the subquery.

• Inserts all the rows returned by the subquery in the table, 
sales_reps.

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee_id, last_name, salary, commission_pct
FROM   employees
WHERE  job_id LIKE '%REP%';

Copying Rows from Another Table

You can use the INSERT statement to add rows to a table where the values are derived from existing 
tables. In the example in the slide, for the INSERT INTO statement to work, you must have already 
created the sales_reps table using the CREATE TABLE statement. CREATE TABLE is discussed 
in the lesson titled “Using DDL Statements to Create and Manage Tables.” 

In place of the VALUES clause, you use a subquery. 

Syntax
INSERT INTO table [ column (, column) ] subquery;

In the syntax:
table Is the name of the table
column Is the name of the column in the table to populate
subquery Is the subquery that returns rows to the table

The number of columns and their data types in the column list of the INSERT clause must match the 
number of values and their data types in the subquery. Zero or more rows are added depending on the 
number of rows returned by the subquery. To create a copy of the rows of a table, use SELECT * in 
the subquery:
INSERT INTO copy_emp

SELECT * 
FROM   employees;



Oracle Database 11g: SQL Fundamentals I 9 - 13

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK, 
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement



Oracle Database 11g: SQL Fundamentals I 9 - 14

Copyright © 2009, Oracle. All rights reserved.

Changing Data in a Table

EMPLOYEES

Update rows in the EMPLOYEES table:

Changing Data in a Table

The slide illustrates changing the department number for employees in department 60 to 
department 80.



Oracle Database 11g: SQL Fundamentals I 9 - 15

Copyright © 2009, Oracle. All rights reserved.

UPDATE Statement Syntax

• Modify existing values in a table with the UPDATE
statement:

• Update more than one row at a time (if required).

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

UPDATE Statement Syntax

You can modify the existing values in a table by using the UPDATE statement.

In the syntax:
table Is the name of the table
column Is the name of the column in the table to populate
value Is the corresponding value or subquery for the column
condition Identifies the rows to be updated and is composed of column names, 

expressions, constants, subqueries, and comparison operators

Confirm the update operation by querying the table to display the updated rows. 

For more information, see the section on “UPDATE” in Oracle Database SQL Language Reference 
11g, Release 1 (11.1). 
Note: In general, use the primary key column in the WHERE clause to identify a single row for 
update. Using other columns can unexpectedly cause several rows to be updated. For example, 
identifying a single row in the EMPLOYEES table by name is dangerous, because more than one 
employee may have the same name.



Oracle Database 11g: SQL Fundamentals I 9 - 16

Copyright © 2009, Oracle. All rights reserved.

Updating Rows in a Table

• Values for a specific row or rows are modified if you 
specify the WHERE clause:

• Values for all the rows in the table are modified if you omit 
the WHERE clause:

• Specify SET column_name= NULL to update a column 
value to NULL.

UPDATE employees
SET    department_id = 50
WHERE  employee_id = 113;

UPDATE copy_emp
SET    department_id = 110;

Updating Rows in a Table

The UPDATE statement modifies the values of a specific row or rows if the WHERE clause is 
specified. The example in the slide shows the transfer of employee 113 (Popp) to department 50. 

If you omit the WHERE clause, values for all the rows in the table are modified. Examine the updated 
rows in the COPY_EMP table.

SELECT last_name, department_id
FROM   copy_emp;

For example, an employee who was an SA_REP has now changed his job to an IT_PROG. 
Therefore, his JOB_ID needs to be updated and the commission field needs to be set to NULL.

UPDATE employees
SET job_id = 'IT_PROG', commission_pct = NULL
WHERE employee_id = 114;

Note: The COPY_EMP table has the same data as the EMPLOYEES table.

…



Oracle Database 11g: SQL Fundamentals I 9 - 17

Copyright © 2009, Oracle. All rights reserved.

UPDATE   employees
SET      job_id  = (SELECT  job_id 

FROM    employees 
WHERE   employee_id = 205), 

salary  = (SELECT  salary 
FROM    employees 
WHERE   employee_id = 205) 

WHERE    employee_id    =  113;

Updating Two Columns with a Subquery

Update employee 113’s job and salary to match those of 
employee 205.

Updating Two Columns with a Subquery

You can update multiple columns in the SET clause of an UPDATE statement by writing multiple
subqueries. The syntax is as follows: 

UPDATE table
SET     column =

(SELECT column
FROM table
WHERE condition)

[ ,
column = 

(SELECT column
FROM table
WHERE condition)]

[WHERE  condition ] ;

The example in the slide can also be written as follows:
UPDATE employees 
SET (job_id, salary)  = (SELECT  job_id, salary 

FROM    employees 
WHERE   employee_id = 205)

WHERE    employee_id    =  113;



Oracle Database 11g: SQL Fundamentals I 9 - 18

Copyright © 2009, Oracle. All rights reserved.

UPDATE  copy_emp
SET     department_id  =  (SELECT department_id

FROM employees
WHERE employee_id = 100)

WHERE   job_id         =  (SELECT job_id
FROM employees
WHERE employee_id = 200);

Updating Rows Based on Another Table

Use the subqueries in the UPDATE statements to update row 
values in a table based on values from another table:

Updating Rows Based on Another Table

You can use the subqueries in the UPDATE statements to update values in a table. The example in the 
slide updates the COPY_EMP table based on the values from the EMPLOYEES table. It changes the 
department number of all employees with employee 200’s job ID to employee 100’s current 
department number.



Oracle Database 11g: SQL Fundamentals I 9 - 19

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK, 
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement



Oracle Database 11g: SQL Fundamentals I 9 - 20

Copyright © 2009, Oracle. All rights reserved.

Delete a row from the DEPARTMENTS table:

Removing a Row from a Table 

DEPARTMENTS

Removing a Row from a Table

The Contracting department has been removed from the DEPARTMENTS table (assuming no 
constraints on the DEPARTMENTS table are violated), as shown by the graphic in the slide.



Oracle Database 11g: SQL Fundamentals I 9 - 21

Copyright © 2009, Oracle. All rights reserved.

DELETE Statement

You can remove existing rows from a table by using the 
DELETE statement:

DELETE [FROM] table
[WHERE condition];

DELETE Statement Syntax

You can remove existing rows from a table by using the DELETE statement.

In the syntax:
table Is the name of the table
condition Identifies the rows to be deleted, and is composed of column names, 

expressions, constants, subqueries, and comparison operators

Note: If no rows are deleted, the message “0 rows deleted” is returned (on the Script Output tab in 
SQL Developer)

For more information, see the section on “DELETE” in Oracle Database SQL Language Reference
11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I 9 - 22

Copyright © 2009, Oracle. All rights reserved.

Deleting Rows from a Table

• Specific rows are deleted if you specify the WHERE clause:

• All rows in the table are deleted if you omit the WHERE
clause:

DELETE FROM departments
WHERE  department_name = 'Finance';

DELETE FROM  copy_emp;

Deleting Rows from a Table

You can delete specific rows by specifying the WHERE clause in the DELETE statement. The first 
example in the slide deletes the Accounting department from the DEPARTMENTS table. You can 
confirm the delete operation by displaying the deleted rows using the SELECT statement. 

SELECT  *
FROM    departments
WHERE   department_name = 'Finance';

However, if you omit the WHERE clause, all rows in the table are deleted. The second example in the 
slide deletes all rows from the COPY_EMP table, because no WHERE clause was specified.

Example:

Remove rows identified in the WHERE clause.

DELETE FROM  employees WHERE employee_id = 114;

DELETE FROM  departments WHERE department_id IN (30, 40);



Oracle Database 11g: SQL Fundamentals I 9 - 23

Copyright © 2009, Oracle. All rights reserved.

Deleting Rows Based 
on Another Table

Use the subqueries in the DELETE statements to remove rows 
from a table based on values from another table:

DELETE FROM employees
WHERE  department_id =

(SELECT department_id
FROM   departments
WHERE  department_name 

LIKE '%Public%');

Deleting Rows Based on Another Table

You can use the subqueries to delete rows from a table based on values from another table. The 
example in the slide deletes all the employees in a department, where the department name contains 
the string Public.

The subquery searches the DEPARTMENTS table to find the department number based on the 
department name containing the string Public. The subquery then feeds the department number to 
the main query, which deletes rows of data from the EMPLOYEES table based on this department 
number.



Oracle Database 11g: SQL Fundamentals I 9 - 24

Copyright © 2009, Oracle. All rights reserved.

TRUNCATE Statement

• Removes all rows from a table, leaving the table empty 
and the table structure intact

• Is a data definition language (DDL) statement rather than a 
DML statement; cannot easily be undone

• Syntax:

• Example:

TRUNCATE TABLE table_name;

TRUNCATE TABLE copy_emp;

TRUNCATE Statement

A more efficient method of emptying a table is by using the TRUNCATE statement.
You can use the TRUNCATE statement to quickly remove all rows from a table or cluster. Removing 
rows with the TRUNCATE statement is faster than removing them with the DELETE statement for the 
following reasons:

• The TRUNCATE statement is a data definition language (DDL) statement and generates no 
rollback information. Rollback information is covered later in this lesson.

• Truncating a table does not fire the delete triggers of the table. 

If the table is the parent of a referential integrity constraint, you cannot truncate the table. You need 
to disable the constraint before issuing the TRUNCATE statement. Disabling constraints is covered in 
the lesson titled “Using DDL Statements to Create and Manage Tables.”



Oracle Database 11g: SQL Fundamentals I 9 - 25

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement



Oracle Database 11g: SQL Fundamentals I 9 - 26

Copyright © 2009, Oracle. All rights reserved.

Database Transactions

A database transaction consists of one of the following:

• DML statements that constitute one consistent change to 
the data

• One DDL statement

• One data control language (DCL) statement

Database Transactions

The Oracle server ensures data consistency based on transactions. Transactions give you more 
flexibility and control when changing data, and they ensure data consistency in the event of user 
process failure or system failure.

Transactions consist of DML statements that constitute one consistent change to the data. For 
example, a transfer of funds between two accounts should include the debit in one account and the 
credit to another account of the same amount. Both actions should either fail or succeed together; the 
credit should not be committed without the debit.

Transaction Types

Type Description 

Data manipulation 
language (DML) 

Consists of any number of DML statements that the Oracle 
server treats as a single entity or a logical unit of work 

Data definition 
language (DDL) 

Consists of only one DDL statement 

Data control language 
(DCL) 

Consists of only one DCL statement 

 



Oracle Database 11g: SQL Fundamentals I 9 - 27

Copyright © 2009, Oracle. All rights reserved.

Database Transactions: Start and End

• Begin when the first DML SQL statement is executed.

• End with one of the following events:
– A COMMIT or ROLLBACK statement is issued.

– A DDL or DCL statement executes (automatic commit).

– The user exits SQL Developer or SQL*Plus.

– The system crashes.

Database Transaction: Start and End

When does a database transaction start and end? 

A transaction begins when the first DML statement is encountered and ends when one of the 
following occurs:

• A COMMIT or ROLLBACK statement is issued.
• A DDL statement, such as CREATE, is issued.
• A DCL statement is issued.
• The user exits SQL Developer or SQL*Plus.
• A machine fails or the system crashes.

After one transaction ends, the next executable SQL statement automatically starts the next 
transaction.

A DDL statement or a DCL statement is automatically committed and, therefore, implicitly ends a 
transaction.



Oracle Database 11g: SQL Fundamentals I 9 - 28

Copyright © 2009, Oracle. All rights reserved.

Advantages of COMMIT
and ROLLBACK Statements

With COMMIT and ROLLBACK statements, you can:

• Ensure data consistency

• Preview data changes before making changes permanent

• Group logically-related operations

Advantages of COMMIT and ROLLBACK Statements

With the COMMIT and ROLLBACK statements, you have control over making changes to the data 
permanent.



Oracle Database 11g: SQL Fundamentals I 9 - 29

Copyright © 2009, Oracle. All rights reserved.

Explicit Transaction Control Statements

SAVEPOINT B

SAVEPOINT A

DELETE

INSERT

UPDATE

INSERT

COMMITTime

Transaction

ROLLBACK 
to SAVEPOINT B

ROLLBACK 
to SAVEPOINT A

ROLLBACK

Explicit Transaction Control Statements

You can control the logic of transactions by using the COMMIT, SAVEPOINT, and ROLLBACK
statements.

Note: You cannot COMMIT to a SAVEPOINT. SAVEPOINT is not ANSI-standard SQL.

Statement Description 

COMMIT 
 

COMMIT ends the current transaction by making all pending 
data changes permanent. 

SAVEPOINT name SAVEPOINT name marks a savepoint within the current 
transaction. 

ROLLBACK ROLLBACK ends the current transaction by discarding all 
pending data changes. 

ROLLBACK TO 
SAVEPOINT name 

ROLLBACK TO SAVEPOINT rolls back the current 
transaction to the specified savepoint, thereby discarding any 
changes and/or savepoints that were created after the 
savepoint to which you are rolling back. If you omit the TO 
SAVEPOINT clause, the ROLLBACK statement rolls back the 
entire transaction. Because savepoints are logical, there is no 
way to list the savepoints that you have created. 

 



Oracle Database 11g: SQL Fundamentals I 9 - 30

Copyright © 2009, Oracle. All rights reserved.

UPDATE...
SAVEPOINT update_done;

INSERT...
ROLLBACK TO update_done;

Rolling Back Changes to a Marker

• Create a marker in the current transaction by using the 
SAVEPOINT statement.

• Roll back to that marker by using the ROLLBACK TO
SAVEPOINT statement.

Rolling Back Changes to a Marker

You can create a marker in the current transaction by using the SAVEPOINT statement, which 
divides the transaction into smaller sections. You can then discard pending changes up to that marker 
by using the ROLLBACK TO SAVEPOINT statement. 

Note that if you create a second savepoint with the same name as an earlier savepoint, the earlier 
savepoint is deleted.



Oracle Database 11g: SQL Fundamentals I 9 - 31

Copyright © 2009, Oracle. All rights reserved.

Implicit Transaction Processing

• An automatic commit occurs in the following 
circumstances:
– A DDL statement issued

– A DCL statement issued

– Normal exit from SQL Developer or SQL*Plus, without 
explicitly issuing COMMIT or ROLLBACK statements

• An automatic rollback occurs when there is an abnormal 
termination of SQL Developer or SQL*Plus or a system 
failure.

Implicit Transaction Processing

Note: In SQL*Plus, the AUTOCOMMIT command can be toggled ON or OFF. If set to ON, each 
individual DML statement is committed as soon as it is executed. You cannot roll back the changes. 
If set to OFF, the COMMIT statement can still be issued explicitly. Also, the COMMIT statement is 
issued when a DDL statement is issued or when you exit SQL*Plus. The SET AUTOCOMMIT
ON/OFF command is skipped in SQL Developer. DML is committed on a normal exit from SQL 
Developer only if you have the Autocommit preference enabled. To enable Autocommit, perform the 
following:

• In the Tools menu, select Preferences. In the Preferences dialog box, expand Database and select 
Worksheet Parameters.

• In the right pane, select the “Autocommit in SQL Worksheet” option. Click OK.

Status Circumstances 
Automatic commit DDL statement or DCL statement issued 

SQL Developer or SQL*Plus exited normally, without 
explicitly issuing COMMIT or ROLLBACK commands 

Automatic rollback Abnormal termination of SQL Developer or SQL*Plus or 
system failure 

 



Oracle Database 11g: SQL Fundamentals I 9 - 32

Implicit Transaction Processing (continued)

System Failures

When a transaction is interrupted by a system failure, the entire transaction is automatically rolled 
back. This prevents the error from causing unwanted changes to the data and returns the tables to the 
state at the time of the last commit. In this way, the Oracle server protects the integrity of the tables.

In SQL Developer, a normal exit from the session is accomplished by selecting Exit from the File 
menu. In SQL*Plus, a normal exit is accomplished by entering the EXIT command at the prompt. 
Closing the window is interpreted as an abnormal exit.



Oracle Database 11g: SQL Fundamentals I 9 - 33

Copyright © 2009, Oracle. All rights reserved.

State of the Data Before COMMIT or ROLLBACK

• The previous state of the data can be recovered.

• The current user can review the results of the DML 
operations by using the SELECT statement.

• Other users cannot view the results of the DML statements 
issued by the current user.

• The affected rows are locked; other users cannot change 
the data in the affected rows.

State of the Data Before COMMIT or ROLLBACK

Every data change made during the transaction is temporary until the transaction is committed.

The state of the data before COMMIT or ROLLBACK statements are issued can be described as 
follows:

• Data manipulation operations primarily affect the database buffer; therefore, the previous state 
of the data can be recovered.

• The current user can review the results of the data manipulation operations by querying the 
tables.

• Other users cannot view the results of the data manipulation operations made by the current user. 
The Oracle server institutes read consistency to ensure that each user sees data as it existed at the 
last commit.

• The affected rows are locked; other users cannot change the data in the affected rows.



Oracle Database 11g: SQL Fundamentals I 9 - 34

Copyright © 2009, Oracle. All rights reserved.

State of the Data After COMMIT

• Data changes are saved in the database.

• The previous state of the data is overwritten.

• All users can view the results.

• Locks on the affected rows are released; those rows are 
available for other users to manipulate.

• All savepoints are erased.

State of the Data After COMMIT

Make all pending changes permanent by using the COMMIT statement. Here is what happens after a 
COMMIT statement:

• Data changes are written to the database.
• The previous state of the data is no longer available with normal SQL queries.
• All users can view the results of the transaction.
• The locks on the affected rows are released; the rows are now available for other users to 

perform new data changes.
• All savepoints are erased.



Oracle Database 11g: SQL Fundamentals I 9 - 35

Copyright © 2009, Oracle. All rights reserved.

COMMIT;

Committing Data

• Make the changes:

• Commit the changes:

DELETE FROM employees
WHERE  employee_id = 99999;

INSERT INTO departments 
VALUES (290, 'Corporate Tax', NULL, 1700);

Committing Data

In the example in the slide, a row is deleted from the EMPLOYEES table and a new row is inserted 
into the DEPARTMENTS table. The changes are saved by issuing the COMMIT statement.

Example:

Remove departments 290 and 300 in the DEPARTMENTS table and update a row in the EMPLOYEES
table. Save the data change.

DELETE FROM departments
WHERE  department_id IN (290, 300);

UPDATE  employees
SET   department_id = 80
WHERE employee_id = 206;

COMMIT;



Oracle Database 11g: SQL Fundamentals I 9 - 36

Copyright © 2009, Oracle. All rights reserved.

DELETE FROM copy_emp;
ROLLBACK ;

State of the Data After ROLLBACK

Discard all pending changes by using the ROLLBACK
statement:

• Data changes are undone.

• Previous state of the data is restored.

• Locks on the affected rows are released.

State of the Data After ROLLBACK

Discard all pending changes by using the ROLLBACK statement, which results in the following:
• Data changes are undone.
• The previous state of the data is restored.
• Locks on the affected rows are released.



Oracle Database 11g: SQL Fundamentals I 9 - 37

Copyright © 2009, Oracle. All rights reserved.

State of the Data After ROLLBACK: Example

DELETE FROM test;
25,000 rows deleted.

ROLLBACK;
Rollback complete.

DELETE FROM test WHERE  id = 100;
1 row deleted.

SELECT * FROM   test WHERE  id = 100;
No rows selected.

COMMIT;
Commit complete.

State of the Data After ROLLBACK: Example

While attempting to remove a record from the TEST table, you may accidentally empty the table. 
However, you can correct the mistake, reissue a proper statement, and make the data change 
permanent.



Oracle Database 11g: SQL Fundamentals I 9 - 38

Copyright © 2009, Oracle. All rights reserved.

Statement-Level Rollback

• If a single DML statement fails during execution, only that 
statement is rolled back.

• The Oracle server implements an implicit savepoint.

• All other changes are retained.

• The user should terminate transactions explicitly by 
executing a COMMIT or ROLLBACK statement.

Statement-Level Rollback

A part of a transaction can be discarded through an implicit rollback if a statement execution error is 
detected. If a single DML statement fails during execution of a transaction, its effect is undone by a 
statement-level rollback, but the changes made by the previous DML statements in the transaction 
are not discarded. They can be committed or rolled back explicitly by the user.

The Oracle server issues an implicit commit before and after any DDL statement. So, even if your 
DDL statement does not execute successfully, you cannot roll back the previous statement because 
the server issued a commit.

Terminate your transactions explicitly by executing a COMMIT or ROLLBACK statement.



Oracle Database 11g: SQL Fundamentals I 9 - 39

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement



Oracle Database 11g: SQL Fundamentals I 9 - 40

Copyright © 2009, Oracle. All rights reserved.

Read Consistency

• Read consistency guarantees a consistent view of the data 
at all times.

• Changes made by one user do not conflict with the 
changes made by another user.

• Read consistency ensures that, on the same data:
– Readers do not wait for writers

– Writers do not wait for readers

– Writers wait for writers

Read Consistency

Database users access the database in two ways:
• Read operations (SELECT statement)
• Write operations (INSERT, UPDATE, DELETE statements)

You need read consistency so that the following occur:
• The database reader and writer are ensured a consistent view of the data.
• Readers do not view data that is in the process of being changed.
• Writers are ensured that the changes to the database are done in a consistent manner.
• Changes made by one writer do not disrupt or conflict with the changes being made by another 

writer.

The purpose of read consistency is to ensure that each user sees data as it existed at the last commit, 
before a DML operation started.

Note: The same user can log in to different sessions. Each session maintains read consistency in the 
manner described above, even if they are the same users.



Oracle Database 11g: SQL Fundamentals I 9 - 41

Copyright © 2009, Oracle. All rights reserved.

Implementing Read Consistency

SELECT  *
FROM userA.employees;

UPDATE employees
SET    salary = 7000
WHERE  last_name = 'Grant';

Data
blocks

Undo
segments

Changed
and
unchanged 
data
Before 
change
(“old” data)

User A

User B

Read-
consistent
image

Implementing Read Consistency

Read consistency is an automatic implementation. It keeps a partial copy of the database in the undo 
segments. The read-consistent image is constructed from the committed data in the table and the old 
data that is being changed and is not yet committed from the undo segment. 

When an insert, update, or delete operation is made on the database, the Oracle server takes a copy of 
the data before it is changed and writes it to an undo segment.
All readers, except the one who issued the change, see the database as it existed before the changes 
started; they view the undo segment’s “snapshot” of the data.

Before the changes are committed to the database, only the user who is modifying the data sees the 
database with the alterations. Everyone else sees the snapshot in the undo segment. This guarantees 
that readers of the data read consistent data that is not currently undergoing change.

When a DML statement is committed, the change made to the database becomes visible to anyone 
issuing a SELECT statement after the commit is done. The space occupied by the old data in the 
undo segment file is freed for reuse.

If the transaction is rolled back, the changes are undone:
• The original, older version of the data in the undo segment is written back to the table.
• All users see the database as it existed before the transaction began.



Oracle Database 11g: SQL Fundamentals I 9 - 42

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK, 
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement



Oracle Database 11g: SQL Fundamentals I 9 - 43

Copyright © 2009, Oracle. All rights reserved.

FOR UPDATE Clause in a SELECT Statement

• Locks the rows in the EMPLOYEES table where job_id is 
SA_REP.

• Lock is released only when you issue a ROLLBACK or a 
COMMIT.

• If the SELECT statement attempts to lock a row that is 
locked by another user, the database waits until the row is 
available, and then returns the results of the SELECT
statement.

SELECT employee_id, salary, commission_pct, job_id
FROM employees  
WHERE job_id = 'SA_REP'
FOR UPDATE 
ORDER BY employee_id;

FOR UPDATE Clause in a SELECT Statement

When you issue a SELECT statement against the database to query some records, no locks are placed 
on the selected rows. In general, this is required because the number of records locked at any given 
time is (by default) kept to the absolute minimum: only those records that have been changed but not 
yet committed are locked. Even then, others will be able to read those records as they appeared 
before the change (the “before image” of the data). There are times, however, when you may want to 
lock a set of records even before you change them in your program. Oracle offers the FOR UPDATE
clause of the SELECT statement to perform this locking. 

When you issue a SELECT...FOR UPDATE statement, the relational database management system 
(RDBMS) automatically obtains exclusive row-level locks on all the rows identified by the SELECT
statement, thereby holding the records “for your changes only.” No one else will be able to change 
any of these records until you perform a ROLLBACK or a COMMIT. 

You can append the optional keyword NOWAIT to the FOR UPDATE clause to tell the Oracle server 
not to wait if the table has been locked by another user. In this case, control will be returned 
immediately to your program or to your SQL Developer environment so that you can perform other 
work, or simply wait for a period of time before trying again. Without the NOWAIT clause, your 
process will block until the table is available, when the locks are released by the other user through 
the issue of a COMMIT or a ROLLBACK command.



Oracle Database 11g: SQL Fundamentals I 9 - 44

Copyright © 2009, Oracle. All rights reserved.

FOR UPDATE Clause: Examples

• You can use the FOR UPDATE clause in a SELECT
statement against multiple tables. 

• Rows from both the EMPLOYEES and DEPARTMENTS tables 
are locked.

• Use FOR UPDATE OF column_name to qualify the column 
you intend to change, then only the rows from that specific 
table are locked.

SELECT e.employee_id, e.salary, e.commission_pct 
FROM employees e JOIN departments d 
USING (department_id) 
WHERE job_id = 'ST_CLERK‘
AND location_id = 1500 
FOR UPDATE 
ORDER BY e.employee_id; 

FOR UPDATE Clause: Examples

In the example in the slide, the statement locks rows in the EMPLOYEES table with JOB_ID set to 
ST_CLERK and LOCATION_ID set to 1500, and locks rows in the DEPARTMENTS table with 
departments in LOCATION_ID set as 1500.

You can use the FOR UPDATE OF column_name to qualify the column that you intend to change. 
The OF list of the FOR UPDATE clause does not restrict you to changing only those columns of the 
selected rows. Locks are still placed on all rows; if you simply state FOR UPDATE in the query and 
do not include one or more columns after the OF keyword, the database will lock all identified rows 
across all the tables listed in the FROM clause. 

The following statement locks only those rows in the EMPLOYEES table with ST_CLERK located in 
LOCATION_ID 1500. No rows are locked in the DEPARTMENTS table:

SELECT e.employee_id, e.salary, e.commission_pct 
FROM employees e JOIN departments d 
USING (department_id) 
WHERE job_id = 'ST_CLERK' AND location_id = 1500 
FOR UPDATE OF e.salary 
ORDER BY e.employee_id; 



Oracle Database 11g: SQL Fundamentals I 9 - 45

FOR UPDATE Clause: Examples (continued)

In the following example, the database is instructed to wait for five seconds for the row to become 
available, and then return control to you.

SELECT employee_id, salary, commission_pct, job_id
FROM employees  
WHERE job_id = 'SA_REP'
FOR UPDATE WAIT 5
ORDER BY employee_id;



Oracle Database 11g: SQL Fundamentals I 9 - 46

Copyright © 2009, Oracle. All rights reserved.

Quiz

The following statements produce the same results:

1. True

2. False

DELETE FROM copy_emp;

TRUNCATE TABLE copy_emp;

Answer: 2



Oracle Database 11g: SQL Fundamentals I 9 - 47

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use the 
following statements:

Locks rows identified by the SELECT queryFOR UPDATE clause 
in SELECT

Removes all rows from a tableTRUNCATE

Adds a new row to the tableINSERT

Modifies existing rows in the tableUPDATE

Removes existing rows from the tableDELETE

Makes all pending changes permanentCOMMIT

Discards all pending data changesROLLBACK

Is used to roll back to the savepoint markerSAVEPOINT

DescriptionFunction

Summary

In this lesson, you should have learned how to manipulate data in the Oracle database by using the 
INSERT, UPDATE, DELETE, and TRUNCATE statements, as well as how to control data changes by 
using the COMMIT, SAVEPOINT, and ROLLBACK statements. You also learned how to use the FOR
UPDATE clause of the SELECT statement to lock rows for your changes only.

Remember that the Oracle server guarantees a consistent view of data at all times.



Oracle Database 11g: SQL Fundamentals I 9 - 48

Copyright © 2009, Oracle. All rights reserved.

Practice 9: Overview

This practice covers the following topics:

• Inserting rows into the tables

• Updating and deleting rows in the table

• Controlling transactions

Practice 9: Overview

In this practice, you add rows to the MY_EMPLOYEE table, update and delete data from the table, and 
control your transactions. You run a script to create the MY_EMPLOYEE table.



Copyright © 2009, Oracle. All rights reserved.

Using DDL Statements
to Create and Manage Tables 



Oracle Database 11g: SQL Fundamentals I 10 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the 
following:

• Categorize the main database objects

• Review the table structure

• List the data types that are available for columns

• Create a simple table

• Explain how constraints are created at the time of table 
creation

• Describe how schema objects work

Objectives

In this lesson, you are introduced to the data definition language (DDL) statements. You learn the 
basics of how to create simple tables, alter them, and remove them. The data types available in DDL 
are shown and schema concepts are introduced. Constraints are discussed in this lesson. Exception 
messages that are generated from violating constraints during DML operations are shown and 
explained.



Oracle Database 11g: SQL Fundamentals I 10 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• CREATE TABLE statement:

– Access another user’s tables
– DEFAULT option

• Data types
• Overview of constraints: NOT NULL, UNIQUE, PRIMARY

KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE

– Read-only tables

• DROP TABLE statement



Oracle Database 11g: SQL Fundamentals I 10 - 4

Copyright © 2009, Oracle. All rights reserved.

Database Objects

Logically represents subsets of data from one or 
more tables    

View 

Generates numeric valuesSequence 

Basic unit of storage; composed of rows  Table

Gives alternative name to an objectSynonym 

Improves the performance of some queriesIndex

DescriptionObject

Database Objects

The Oracle Database can contain multiple data structures. Each structure should be outlined in the 
database design so that it can be created during the build stage of database development.

• Table: Stores data
• View: Subset of data from one or more tables
• Sequence: Generates numeric values
• Index: Improves the performance of some queries
• Synonym: Gives alternative name to an object

Oracle Table Structures
• Tables can be created at any time, even when users are using the database.
• You do not need to specify the size of a table. The size is ultimately defined by the amount of 

space allocated to the database as a whole. It is important, however, to estimate how much space 
a table will use over time.

• Table structure can be modified online.

Note: More database objects are available, but are not covered in this course.



Oracle Database 11g: SQL Fundamentals I 10 - 5

Copyright © 2009, Oracle. All rights reserved.

Naming Rules

Table names and column names must:

• Begin with a letter

• Be 1–30 characters long

• Contain only A–Z, a–z, 0–9, _, $, and #

• Not duplicate the name of another object owned by the 
same user

• Not be an Oracle server–reserved word

Naming Rules

You name database tables and columns according to the standard rules for naming any Oracle 
database object:

• Table names and column names must begin with a letter and be 1–30 characters long.
• Names must contain only the characters A–Z, a–z, 0–9, _ (underscore), $, and # (legal 

characters, but their use is discouraged).
• Names must not duplicate the name of another object owned by the same Oracle server user.
• Names must not be an Oracle server–reserved word.

- You may also use quoted identifiers to represent the name of an object. A quoted identifier 
begins and ends with double quotation marks (“”). If you name a schema object using a 
quoted identifier, you must use the double quotation marks whenever you refer to that 
object. Quoted identifiers can be reserved words, although this is not recommended.

Naming Guidelines

Use descriptive names for tables and other database objects.

Note: Names are not case-sensitive. For example, EMPLOYEES is treated to be the same name as 
eMPloyees or eMpLOYEES. However, quoted identifiers are case-sensitive.

For more information, see the section on Schema Object Names and Qualifiers in the Oracle 
Database SQL Language Reference 11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I 10 - 6

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• CREATE TABLE statement:

– Access another user’s tables
– DEFAULT option

• Data types
• Overview of constraints: NOT NULL, UNIQUE, PRIMARY

KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE

– Read-only tables

• DROP TABLE statement



Oracle Database 11g: SQL Fundamentals I 10 - 7

Copyright © 2009, Oracle. All rights reserved.

CREATE TABLE Statement

• You must have:
– The CREATE TABLE privilege

– A storage area

• You specify:
– The table name

– The column name, column data type, and column size

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr][, ...]);

CREATE TABLE Statement

You create tables to store data by executing the SQL CREATE TABLE statement. This statement is 
one of the DDL statements that are a subset of the SQL statements used to create, modify, or remove 
Oracle Database structures. These statements have an immediate effect on the database and they also 
record information in the data dictionary. 

To create a table, a user must have the CREATE TABLE privilege and a storage area in which to 
create objects. The database administrator (DBA) uses data control language (DCL) statements to 
grant privileges to users.

In the syntax:
schema Is the same as the owner’s name
table Is the name of the table
DEFAULT expr Specifies a default value if a value is omitted in the INSERT

statement
column Is the name of the column
datatype Is the column’s data type and length



Oracle Database 11g: SQL Fundamentals I 10 - 8

Copyright © 2009, Oracle. All rights reserved.

Referencing Another User’s Tables

• Tables belonging to other users are not in the user’s 
schema.

• You should use the owner’s name as a prefix to those 
tables.

USERBUSERA

SELECT * 
FROM userB.employees;

SELECT * 
FROM userA.employees;

Referencing Another User’s Tables

A schema is a collection of logical structures of data or schema objects. A schema is owned by a 
database user and has the same name as that user. Each user owns a single schema. 

Schema objects can be created and manipulated with SQL and include tables, views, synonyms, 
sequences, stored procedures, indexes, clusters, and database links.

If a table does not belong to the user, the owner’s name must be prefixed to the table. For example, if 
there are schemas named USERA and USERB, and both have an EMPLOYEES table, then if USERA
wants to access the EMPLOYEES table that belongs to USERB, USERA must prefix the table name 
with the schema name:

SELECT *
FROM   userb.employees;

If USERB wants to access the EMPLOYEES table that is owned by USERA, USERB must prefix the 
table name with the schema name:

SELECT *
FROM   usera.employees;



Oracle Database 11g: SQL Fundamentals I 10 - 9

Copyright © 2009, Oracle. All rights reserved.

DEFAULT Option

• Specify a default value for a column during an insert.

• Literal values, expressions, or SQL functions are legal 
values.

• Another column’s name or a pseudocolumn are illegal 
values.

• The default data type must match the column data type.

... hire_date DATE DEFAULT SYSDATE, ...

CREATE TABLE hire_dates
(id          NUMBER(8),
hire_date DATE DEFAULT SYSDATE);

DEFAULT Option

When you define a table, you can specify that a column should be given a default value by using the 
DEFAULT option. This option prevents null values from entering the columns when a row is inserted 
without a value for the column. The default value can be a literal, an expression, or a SQL function 
(such as SYSDATE or USER), but the value cannot be the name of another column or a 
pseudocolumn (such as NEXTVAL or CURRVAL). The default expression must match the data type of 
the column.

Consider the following examples:
INSERT INTO hire_dates values(45, NULL);

The above statement will insert the null value rather than the default value.

INSERT INTO hire_dates(id) values(35);
The above statement will insert SYSDATE for the HIRE_DATE column.

Note: In SQL Developer, click the Run Script icon or press [F5] to run the DDL statements. The 
feedback messages will be shown on the Script Output tabbed page. 



Oracle Database 11g: SQL Fundamentals I 10 - 10

Copyright © 2009, Oracle. All rights reserved.

Creating Tables

• Create the table:

• Confirm table creation:

DESCRIBE dept

CREATE TABLE dept
(deptno      NUMBER(2),
dname       VARCHAR2(14),
loc         VARCHAR2(13),
create_date DATE DEFAULT SYSDATE);

Creating Tables

The example in the slide creates the DEPT table with four columns: DEPTNO, DNAME, LOC, and 
CREATE_DATE. The CREATE_DATE column has a default value. If a value is not provided for an 
INSERT statement, the system date is automatically inserted. 

To confirm that the table was created, run the DESCRIBE command. 

Because creating a table is a DDL statement, an automatic commit takes place when this statement is 
executed.

Note: You can view the list of tables you own by querying the data dictionary. For example:
select table_name from user_tables

Using data dictionary views, you can also find information about other database objects such as 
views, indexes, and so on. You will learn about data dictionaries in detail in the Oracle Database 
11g: SQL Fundaments II course. 



Oracle Database 11g: SQL Fundamentals I 10 - 11

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• CREATE TABLE statement:

– Access another user’s tables
– DEFAULT option

• Data types
• Overview of constraints: NOT NULL, UNIQUE, PRIMARY

KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE

– Read-only tables

• DROP TABLE statement



Oracle Database 11g: SQL Fundamentals I 10 - 12

Copyright © 2009, Oracle. All rights reserved.

Data Types

Raw binary dataRAW and LONG 
RAW

Binary data (up to 4 GB)BLOB

Binary data stored in an external file (up to 4 GB)BFILE

Date and time valuesDATE 

Variable-length character data (up to 2 GB)LONG 

Character data (up to 4 GB)CLOB

A base-64 number system representing the unique 
address of a row in its table

ROWID

Fixed-length character dataCHAR(size)  

Variable-length numeric dataNUMBER(p,s)

Variable-length character dataVARCHAR2(size)

DescriptionData Type

Data Types

When you identify a column for a table, you need to provide a data type for the column. There are 
several data types available:

Data Type Description 

VARCHAR2(size) 
 

Variable-length character data (A maximum size must be 
specified: minimum size is 1; maximum size is 4,000.) 

CHAR [(size)] Fixed-length character data of length size bytes (Default and 
minimum size is 1; maximum size is 2,000.) 

NUMBER [(p,s)] Number having precision p and scale s (Precision is the total 
number of decimal digits and scale is the number of digits to 
the right of the decimal point; precision can range from 1 to 
38, and scale can range from –84 to 127.) 

DATE Date and time values to the nearest second between January 1, 
4712 B.C., and December 31, 9999 A.D. 

LONG Variable-length character data (up to 2 GB) 

CLOB Character data (up to 4 GB) 

 
 



Oracle Database 11g: SQL Fundamentals I 10 - 13

Data Type Description 

RAW(size)  Raw binary data of length size  (A  maximum size  must be specified: maximum 
size is 2,000.) 

LONG RAW Raw binary data of variable length (up to 2 GB) 

BLOB Binary data (up to 4 GB) 

BFILE Binary data stored in an external file (up to 4 GB) 

ROWID A base-64 number system representing the unique address of a row  in its table 

 
 

Data Types (continued)

Guidelines
• A LONG column is not copied when a table is created using a subquery.
• A LONG column cannot be included in a GROUP BY or an ORDER BY clause.
• Only one LONG column can be used per table.
• No constraints can be defined on a LONG column.
• You might want to use a CLOB column rather than a LONG column.



Oracle Database 11g: SQL Fundamentals I 10 - 14

Data Type Description 

TIMESTAMP  Enables storage of time as a date with fractional seconds. It stores the 
year, month, day, hour, minute, and the second value of the DATE data 
type as well as the fractional seconds value 
There are several variations of this data type such as WITH 
TIMEZONE, WITH LOCALTIMEZONE. 

INTERVAL YEAR TO 
MONTH 

Enables storage of time as an interval of years and months. Used to 
represent the difference between two datetime values in which the only 
significant portions are the year and month 

INTERVAL DAY TO 
SECOND 

Enables storage of time as an interval of days, hours, minutes, and 
seconds. Used to represent the precise difference between two datetime 
values 

 
 

Copyright © 2009, Oracle. All rights reserved.

Datetime Data Types

You can use several datetime data types:

Stored as an interval of years
and months

INTERVAL YEAR TO 
MONTH

Stored as an interval of days, hours, minutes, 
and seconds

INTERVAL DAY TO 
SECOND

Date with fractional secondsTIMESTAMP

DescriptionData Type

Datetime Data Types

Note: These datetime data types are available with Oracle9i and later releases. The datetime data 
types are discussed in detail in the lesson titled “Managing Data in Different Time Zones” in the 
Oracle Database 11g: SQL Fundamentals II course.

Also, for more information about the datetime data types, see the sections on “TIMESTAMP
Datatype,” “INTERVAL YEAR TO MONTH Datatype,” and “INTERVAL DAY TO SECOND Datatype”
in Oracle Database SQL Language Reference 11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I 10 - 15

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• CREATE TABLE statement:

– Access another user’s tables
– DEFAULT option

• Data types
• Overview of constraints: NOT NULL, UNIQUE, PRIMARY

KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE

– Read-only tables

• DROP TABLE statement



Oracle Database 11g: SQL Fundamentals I 10 - 16

Copyright © 2009, Oracle. All rights reserved.

Including Constraints

• Constraints enforce rules at the table level.

• Constraints prevent the deletion of a table if there 
are dependencies.

• The following constraint types are valid:
– NOT NULL

– UNIQUE

– PRIMARY KEY

– FOREIGN KEY

– CHECK

Constraints

The Oracle server uses constraints to prevent invalid data entry into tables.

You can use constraints to do the following:
• Enforce rules on the data in a table whenever a row is inserted, updated, or deleted from that 

table. The constraint must be satisfied for the operation to succeed.
• Prevent the deletion of a table if there are dependencies from other tables.
• Provide rules for Oracle tools, such as Oracle Developer.

Data Integrity Constraints

Constraint Description 

NOT  NULL Specifies that the colum n cannot contain a null value 

UNIQUE  Specifies a colum n or com bination of colum ns whose values 
m ust be unique for all rows in the table 

PRIMARY  KEY Uniquely identifies each row of the table 

FOREIGN  KEY Establishes and enforces a referential integrity between the 
colum n and a colum n of the referenced table such that values 
in one table m atch values in another table. 

CHECK Specifies a condition that m ust be true 

 



Oracle Database 11g: SQL Fundamentals I 10 - 17

Copyright © 2009, Oracle. All rights reserved.

Constraint Guidelines

• You can name a constraint, or the Oracle server generates 
a name by using the SYS_Cn format.

• Create a constraint at either of the following times:
– At the same time as the creation of the table

– After the creation of the table

• Define a constraint at the column or table level.

• View a constraint in the data dictionary.

Constraint Guidelines

All constraints are stored in the data dictionary. Constraints are easy to reference if you give them a 
meaningful name. Constraint names must follow the standard object-naming rules, except that the 
name cannot be the same as another object owned by the same user. If you do not name your 
constraint, the Oracle server generates a name with the format SYS_Cn, where n is an integer so that 
the constraint name is unique.

Constraints can be defined at the time of table creation or after the creation of the table. You can 
define a constraint at the column or table level. Functionally, a table-level constraint is the same as a 
column-level constraint.

For more information, see the section on “Constraints” in Oracle Database SQL Language Reference
11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I 10 - 18

Copyright © 2009, Oracle. All rights reserved.

Defining Constraints

• Syntax:

• Column-level constraint syntax:

• Table-level constraint syntax:

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr]
[column_constraint],
...
[table_constraint][,...]);

column,...
[CONSTRAINT constraint_name] constraint_type
(column, ...),

column [CONSTRAINT constraint_name] constraint_type,

Defining Constraints

The slide gives the syntax for defining constraints when creating a table. You can create constraints 
at either the column level or table level. Constraints defined at the column level are included when 
the column is defined. Table-level constraints are defined at the end of the table definition and must 
refer to the column or columns on which the constraint pertains in a set of parentheses. It is mainly 
the syntax that differentiates the two; otherwise, functionally, a column-level constraint is the same 
as a table-level constraint.

NOT NULL constraints must be defined at the column level. 

Constraints that apply to more than one column must be defined at the table level.

In the syntax:
schema Is the same as the owner’s name
table Is the name of the table
DEFAULT expr Specifies a default value to be used if a value is omitted in the 

INSERT statement
column Is the name of the column
datatype Is the column’s data type and length
column_constraint Is an integrity constraint as part of the column definition
table_constraint Is an integrity constraint as part of the table definition



Oracle Database 11g: SQL Fundamentals I 10 - 19

Copyright © 2009, Oracle. All rights reserved.

Defining Constraints

• Example of a column-level constraint: 

• Example of a table-level constraint:

CREATE TABLE employees(
employee_id  NUMBER(6)
CONSTRAINT emp_emp_id_pk PRIMARY KEY,

first_name   VARCHAR2(20),
...);

CREATE TABLE employees(
employee_id  NUMBER(6),
first_name   VARCHAR2(20),
...
job_id       VARCHAR2(10) NOT NULL,
CONSTRAINT emp_emp_id_pk 
PRIMARY KEY (EMPLOYEE_ID));

1

2

Defining Constraints (continued)

Constraints are usually created at the same time as the table. Constraints can be added to a table after 
its creation and also be temporarily disabled. 

Both examples in the slide create a primary key constraint on the EMPLOYEE_ID column of the 
EMPLOYEES table. 

1. The first example uses the column-level syntax to define the constraint. 
2. The second example uses the table-level syntax to define the constraint. 

More details about the primary key constraint are provided later in this lesson.



Oracle Database 11g: SQL Fundamentals I 10 - 20

Copyright © 2009, Oracle. All rights reserved.

NOT NULL Constraint

Ensures that null values are not permitted for the column:

NOT NULL constraint
(Primary Key enforces 
NOT NULL constraint.)

Absence of NOT NULL constraint 
(Any row can contain a null 
value for this column.)NOT NULL

constraint

NOT NULL Constraint

The NOT NULL constraint ensures that the column contains no null values. Columns without the NOT
NULL constraint can contain null values by default. NOT NULL constraints must be defined at the 
column level. In the EMPLOYEES table, the EMPLOYEE_ID column inherits a NOT NULL constraint 
as it is defined as a primary key. Otherwise, the LAST_NAME, EMAIL, HIRE_DATE, and JOB_ID
columns have the NOT NULL constraint enforced on them.

Note: Primary key constraint is discussed in detail later in this lesson.



Oracle Database 11g: SQL Fundamentals I 10 - 21

Copyright © 2009, Oracle. All rights reserved.

UNIQUE Constraint

EMPLOYEES 
UNIQUE constraint

INSERT INTO

Not allowed: already exists

Allowed

…

UNIQUE Constraint

A UNIQUE key integrity constraint requires that every value in a column or a set of columns (key) be 
unique—that is, no two rows of a table can have duplicate values in a specified column or a set of 
columns. The column (or set of columns) included in the definition of the UNIQUE key constraint is 
called the unique key. If the UNIQUE constraint comprises more than one column, that group of 
columns is called a composite unique key. 

UNIQUE constraints enable the input of nulls unless you also define NOT NULL constraints for the 
same columns. In fact, any number of rows can include nulls for columns without the NOT NULL
constraints because nulls are not considered equal to anything. A null in a column (or in all columns 
of a composite UNIQUE key) always satisfies a UNIQUE constraint. 

Note: Because of the search mechanism for the UNIQUE constraints on more than one column, you 
cannot have identical values in the non-null columns of a partially null composite UNIQUE key 
constraint.



Oracle Database 11g: SQL Fundamentals I 10 - 22

Copyright © 2009, Oracle. All rights reserved.

UNIQUE Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id      NUMBER(6),
last_name        VARCHAR2(25) NOT NULL,
email            VARCHAR2(25),
salary           NUMBER(8,2),
commission_pct   NUMBER(2,2),
hire_date        DATE NOT NULL,

...  
CONSTRAINT emp_email_uk UNIQUE(email));

UNIQUE Constraint (continued)

UNIQUE constraints can be defined at the column level or table level. You define the constraint at 
the table level when you want to create a composite unique key. A composite key is defined when 
there is not a single attribute that can uniquely identify a row. In that case, you can have a unique key 
that is composed of two or more columns, the combined value of which is always unique and can 
identify rows.

The example in the slide applies the UNIQUE constraint to the EMAIL column of the EMPLOYEES
table. The name of the constraint is EMP_EMAIL_UK.

Note: The Oracle server enforces the UNIQUE constraint by implicitly creating a unique index on the 
unique key column or columns.



Oracle Database 11g: SQL Fundamentals I 10 - 23

Copyright © 2009, Oracle. All rights reserved.

PRIMARY KEY Constraint

DEPARTMENTS
PRIMARY KEY

INSERT INTO
Not allowed
(null value)

Not allowed 
(50 already exists)

PRIMARY KEY Constraint

A PRIMARY KEY constraint creates a primary key for the table. Only one primary key can be created 
for each table. The PRIMARY KEY constraint is a column or a set of columns that uniquely identifies 
each row in a table. This constraint enforces the uniqueness of the column or column combination 
and ensures that no column that is part of the primary key can contain a null value.

Note: Because uniqueness is part of the primary key constraint definition, the Oracle server enforces 
the uniqueness by implicitly creating a unique index on the primary key column or columns.



Oracle Database 11g: SQL Fundamentals I 10 - 24

Copyright © 2009, Oracle. All rights reserved.

FOREIGN KEY Constraint

DEPARTMENTS

EMPLOYEES

FOREIGN
KEY

INSERT INTO Not allowed
(9 does not 

exist)
Allowed

…

…

PRIMARY
KEY

FOREIGN KEY Constraint

The FOREIGN KEY (or referential integrity) constraint designates a column or a combination of 
columns as a foreign key and establishes a relationship with a primary key or a unique key in the 
same table or a different table. 

In the example in the slide, DEPARTMENT_ID has been defined as the foreign key in the 
EMPLOYEES table (dependent or child table); it references the DEPARTMENT_ID column of the 
DEPARTMENTS table (the referenced or parent table).

Guidelines
• A foreign key value must match an existing value in the parent table or be NULL.
• Foreign keys are based on data values and are purely logical, rather than physical, pointers.



Oracle Database 11g: SQL Fundamentals I 10 - 25

Copyright © 2009, Oracle. All rights reserved.

FOREIGN KEY Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id      NUMBER(6),
last_name        VARCHAR2(25) NOT NULL,
email            VARCHAR2(25),
salary           NUMBER(8,2),
commission_pct   NUMBER(2,2),
hire_date        DATE NOT NULL,

...
department_id    NUMBER(4),
CONSTRAINT emp_dept_fk FOREIGN KEY (department_id)

REFERENCES departments(department_id),
CONSTRAINT emp_email_uk UNIQUE(email));

FOREIGN KEY Constraint (continued)

FOREIGN KEY constraints can be defined at the column or table constraint level. A composite 
foreign key must be created by using the table-level definition.

The example in the slide defines a FOREIGN KEY constraint on the DEPARTMENT_ID column of 
the EMPLOYEES table, using table-level syntax. The name of the constraint is EMP_DEPT_FK.

The foreign key can also be defined at the column level, provided that the constraint is based on a 
single column. The syntax differs in that the keywords FOREIGN KEY do not appear. For example:

CREATE TABLE employees
(...
department_id NUMBER(4) CONSTRAINT emp_deptid_fk 
REFERENCES departments(department_id),
...
)



Oracle Database 11g: SQL Fundamentals I 10 - 26

Copyright © 2009, Oracle. All rights reserved.

FOREIGN KEY Constraint: Keywords

• FOREIGN KEY: Defines the column in the child table at the 
table-constraint level

• REFERENCES: Identifies the table and column in the parent 
table

• ON DELETE CASCADE: Deletes the dependent rows in the 
child table when a row in the parent table is deleted

• ON DELETE SET NULL: Converts dependent foreign key 
values to null

FOREIGN KEY Constraint: Keywords

The foreign key is defined in the child table and the table containing the referenced column is the 
parent table. The foreign key is defined using a combination of the following keywords: 
• FOREIGN KEY is used to define the column in the child table at the table-constraint level.
• REFERENCES identifies the table and the column in the parent table.
• ON DELETE CASCADE indicates that when a row in the parent table is deleted, the dependent 

rows in the child table are also deleted.
• ON DELETE SET NULL indicates that when a row in the parent table is deleted, the foreign key 

values are set to null.

The default behavior is called the restrict rule, which disallows the update or deletion of referenced 
data. 

Without the ON DELETE CASCADE or the ON DELETE SET NULL options, the row in the parent 
table cannot be deleted if it is referenced in the child table.



Oracle Database 11g: SQL Fundamentals I 10 - 27

Copyright © 2009, Oracle. All rights reserved.

CHECK Constraint

• Defines a condition that each row must satisfy

• The following expressions are not allowed:
– References to CURRVAL, NEXTVAL, LEVEL, and ROWNUM

pseudocolumns
– Calls to SYSDATE, UID, USER, and USERENV functions

– Queries that refer to other values in other rows

..., salary NUMBER(2)
CONSTRAINT emp_salary_min  

CHECK (salary > 0),...

CHECK Constraint

The CHECK constraint defines a condition that each row must satisfy. The condition can use the same 
constructs as the query conditions, with the following exceptions:

• References to the CURRVAL, NEXTVAL, LEVEL, and ROWNUM pseudocolumns
• Calls to SYSDATE, UID, USER, and USERENV functions
• Queries that refer to other values in other rows

A single column can have multiple CHECK constraints that refer to the column in its definition. There 
is no limit to the number of CHECK constraints that you can define on a column.

CHECK constraints can be defined at the column level or table level.
CREATE TABLE employees

(...
salary NUMBER(8,2) CONSTRAINT emp_salary_min 

CHECK (salary > 0),
...



Oracle Database 11g: SQL Fundamentals I 10 - 28

Copyright © 2009, Oracle. All rights reserved.

CREATE TABLE: Example
CREATE TABLE employees

( employee_id    NUMBER(6)
CONSTRAINT     emp_employee_id   PRIMARY KEY

, first_name     VARCHAR2(20)
, last_name      VARCHAR2(25)

CONSTRAINT     emp_last_name_nn  NOT NULL
, email          VARCHAR2(25)

CONSTRAINT     emp_email_nn      NOT NULL
CONSTRAINT     emp_email_uk      UNIQUE

, phone_number   VARCHAR2(20)
, hire_date      DATE

CONSTRAINT     emp_hire_date_nn  NOT NULL
, job_id         VARCHAR2(10)

CONSTRAINT     emp_job_nn        NOT NULL
, salary         NUMBER(8,2)

CONSTRAINT     emp_salary_ck     CHECK (salary>0)
, commission_pct NUMBER(2,2)
, manager_id     NUMBER(6)

CONSTRAINT emp_manager_fk REFERENCES
employees (employee_id)

, department_id  NUMBER(4)
CONSTRAINT     emp_dept_fk       REFERENCES

departments (department_id));

CREATE TABLE: Example

The example in the slide shows the statement that is used to create the EMPLOYEES table in the HR
schema.



Oracle Database 11g: SQL Fundamentals I 10 - 29

Copyright © 2009, Oracle. All rights reserved.

UPDATE employees
SET    department_id = 55
WHERE  department_id = 110;

Violating Constraints

Department 55 does not exist.

Violating Constraints

When you have constraints in place on columns, an error is returned if you try to violate the 
constraint rule. For example, if you try to update a record with a value that is tied to an integrity 
constraint, an error is returned. 

In the example in the slide, department 55 does not exist in the parent table, DEPARTMENTS, and so 
you receive the “parent key not found” violation ORA-02291.



Oracle Database 11g: SQL Fundamentals I 10 - 30

Copyright © 2009, Oracle. All rights reserved.

Violating Constraints

You cannot delete a row that contains a primary key that is 
used as a foreign key in another table.

DELETE FROM departments
WHERE department_id = 60;

Violating Constraints (continued)

If you attempt to delete a record with a value that is tied to an integrity constraint, an error is 
returned.

The example in the slide tries to delete department 60 from the DEPARTMENTS table, but it results 
in an error because that department number is used as a foreign key in the EMPLOYEES table. If the 
parent record that you attempt to delete has child records, you receive the “child record found” 
violation ORA-02292.

The following statement works because there are no employees in department 70:
DELETE FROM  departments
WHERE department_id = 70;



Oracle Database 11g: SQL Fundamentals I 10 - 31

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• CREATE TABLE statement:

– Access another user’s tables
– DEFAULT option

• Data types
• Overview of constraints: NOT NULL, UNIQUE, PRIMARY

KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE

– Read-only tables

• DROP TABLE statement



Oracle Database 11g: SQL Fundamentals I 10 - 32

Copyright © 2009, Oracle. All rights reserved.

Creating a Table Using a Subquery

• Create a table and insert rows by combining the CREATE
TABLE statement and the AS subquery option.

• Match the number of specified columns to the number of 
subquery columns.

• Define columns with column names and default values.

CREATE TABLE table
[(column, column...)]

AS subquery;

Creating a Table Using a Subquery

A second method for creating a table is to apply the AS subquery clause, which both creates the 
table and inserts rows returned from the subquery.

In the syntax:
table Is the name of the table
column Is the name of the column, default value, and integrity constraint
subquery Is the SELECT statement that defines the set of rows to be inserted into

the new table
Guidelines

• The table is created with the specified column names, and the rows retrieved by the SELECT
statement are inserted into the table.

• The column definition can contain only the column name and default value.
• If column specifications are given, the number of columns must equal the number of columns in 

the subquery SELECT list.
• If no column specifications are given, the column names of the table are the same as the column 

names in the subquery.
• The column data type definitions and the NOT NULL constraint are passed to the new table. Note 

that only the explicit NOT NULL constraint will be inherited. The PRIMARY KEY column will 
not pass the NOT NULL feature to the new column. Any other constraint rules are not passed to 
the new table. However, you can add constraints in the column definition.



Oracle Database 11g: SQL Fundamentals I 10 - 33

Copyright © 2009, Oracle. All rights reserved.

CREATE TABLE dept80
AS 
SELECT  employee_id, last_name, 

salary*12 ANNSAL, 
hire_date

FROM    employees
WHERE   department_id = 80;

Creating a Table Using a Subquery

DESCRIBE dept80

Creating a Table Using a Subquery (continued)

The example in the slide creates a table named DEPT80, which contains details of all the employees 
working in department 80. Notice that the data for the DEPT80 table comes from the EMPLOYEES
table.

You can verify the existence of a database table and check the column definitions by using the 
DESCRIBE command.

However, be sure to provide a column alias when selecting an expression. The expression 
SALARY*12 is given the alias ANNSAL. Without the alias, the following error is generated:



Oracle Database 11g: SQL Fundamentals I 10 - 34

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• CREATE TABLE statement:

– Access another user’s tables
– DEFAULT option

• Data types
• Overview of constraints: NOT NULL, UNIQUE, PRIMARY

KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE

– Read-only tables

• DROP TABLE statement



Oracle Database 11g: SQL Fundamentals I 10 - 35

Copyright © 2009, Oracle. All rights reserved.

ALTER TABLE Statement

Use the ALTER TABLE statement to:

• Add a new column

• Modify an existing column definition

• Define a default value for the new column

• Drop a column

• Rename a column

• Change table to read-only status

ALTER TABLE Statement

After you create a table, you may need to change the table structure for any of the following reasons: 
• You omitted a column.
• Your column definition or its name needs to be changed.
• You need to remove columns. 
• You want to put the table into the read-only mode

You can do this by using the ALTER TABLE statement.



Oracle Database 11g: SQL Fundamentals I 10 - 36

Copyright © 2009, Oracle. All rights reserved.

Read-Only Tables

You can use the ALTER TABLE syntax to:

• Put a table into read-only mode, which prevents DDL or 
DML changes during table maintenance 

• Put the table back into read/write mode

ALTER TABLE employees READ ONLY;

-- perform table maintenance and then
-- return table back to read/write mode

ALTER TABLE employees READ WRITE;

Read-Only Tables

With Oracle Database 11g, you can specify READ ONLY to place a table in the read-only mode. 
When the table is in the READ-ONLY mode, you cannot issue any DML statements that affect the 
table or any SELECT ... FOR UPDATE statements. You can issue DDL statements as long as 
they do not modify any data in the table. Operations on indexes associated with the table are allowed 
when the table is in the READ ONLY mode.

Specify READ/WRITE to return a read-only table to the read/write mode.

Note: You can drop a table that is in the READ ONLY mode. The DROP command is executed only in 
the data dictionary, so access to the table contents is not required. The space used by the table will 
not be reclaimed until the tablespace is made read/write again, and then the required changes can be 
made to the block segment headers, and so on.

For information about the ALTER TABLE statement, see the course titled Oracle Database 10g SQL 
Fundamentals II.



Oracle Database 11g: SQL Fundamentals I 10 - 37

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• CREATE TABLE statement:

– Access another user’s tables
– DEFAULT option

• Data types
• Overview of constraints: NOT NULL, UNIQUE, PRIMARY

KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE

– Read-only tables

• DROP TABLE statement



Oracle Database 11g: SQL Fundamentals I 10 - 38

Copyright © 2009, Oracle. All rights reserved.

Dropping a Table

• Moves a table to the recycle bin 
• Removes the table and all its data entirely if the PURGE

clause is specified

• Invalidates dependent objects and removes object 
privileges on the table

DROP TABLE dept80;

Dropping a Table

The DROP TABLE statement moves a table to the recycle bin or removes the table and all its data 
from the database entirely. Unless you specify the PURGE clause, the DROP TABLE statement does 
not result in space being released back to the tablespace for use by other objects, and the space 
continues to count towards the user’s space quota. Dropping a table invalidates the dependent objects 
and removes object privileges on the table.

When you drop a table, the database loses all the data in the table and all the indexes associated
with it. 

Syntax

DROP TABLE table [PURGE]

In the syntax, table is the name of the table.

Guidelines
• All the data is deleted from the table.
• Any views and synonyms remain, but are invalid.
• Any pending transactions are committed.
• Only the creator of the table or a user with the DROP ANY TABLE privilege can remove a table.

Note: Use the FLASHBACK TABLE statement to restore a dropped table from the recycle bin. This is 
discussed in detail in the course titled Oracle Database 11g: SQL Fundamentals II.



Oracle Database 11g: SQL Fundamentals I 10 - 39

Copyright © 2009, Oracle. All rights reserved.

Quiz

You can use constraints to do the following:

1. Enforce rules on the data in a table whenever a row is 
inserted, updated, or deleted.

2. Prevent the deletion of a table.

3. Prevent the creation of a table.

4. Prevent the creation of data in a table.

Answers: 1, 2, 4



Oracle Database 11g: SQL Fundamentals I 10 - 40

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use the CREATE
TABLE statement to create a table and include constraints:

• Categorize the main database objects

• Review the table structure

• List the data types that are available for columns

• Create a simple table

• Explain how constraints are created at the time of table 
creation

• Describe how schema objects work

Summary

In this lesson, you should have learned how to do the following:

CREATE TABLE
• Use the CREATE TABLE statement to create a table and include constraints.
• Create a table based on another table by using a subquery.

DROP TABLE
• Remove rows and a table structure. 
• When executed, this statement cannot be rolled back.



Oracle Database 11g: SQL Fundamentals I 10 - 41

Copyright © 2009, Oracle. All rights reserved.

Practice 10: Overview

This practice covers the following topics:

• Creating new tables
• Creating a new table by using the CREATE TABLE AS

syntax

• Verifying that tables exist

• Setting a table to read-only status

• Dropping tables

Practice 10: Overview

Create new tables by using the CREATE TABLE statement. Confirm that the new table was added to 
the database. You also learn to set the status of a table as READ ONLY and then revert to 
READ/WRITE.

Note: For all the DDL and DML statements, click the Run Script icon (or press [F5]) to execute the 
query in SQL Developer. This way you get to see the feedback messages on the Script Output tabbed 
page. For SELECT queries, continue to click the Execute Statement icon or press [F9] to get the 
formatted output on the Results tabbed page.





Copyright © 2009, Oracle. All rights reserved.

Creating Other Schema Objects 



Oracle Database 11g: SQL Fundamentals I 11 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the 
following:

• Create simple and complex views

• Retrieve data from views

• Create, maintain, and use sequences

• Create and maintain indexes

• Create private and public synonyms

Objectives

In this lesson, you are introduced to the view, sequence, synonym, and index objects. You learn the 
basics of creating and using views, sequences, and indexes.



Oracle Database 11g: SQL Fundamentals I 11 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Overview of views:
– Creating, modifying, and retrieving data from a view

– Data manipulation language (DML) operations on a view

– Dropping a view

• Overview of sequences:
– Creating, using, and modifying a sequence

– Cache sequence values
– NEXTVAL and CURRVAL pseudocolumns

• Overview of indexes
– Creating, dropping indexes

• Overview of synonyms
– Creating, dropping synonyms



Oracle Database 11g: SQL Fundamentals I 11 - 4

Copyright © 2009, Oracle. All rights reserved.

Database Objects

Logically represents subsets of data from one or 
more tables

View 

Generates numeric valuesSequence 

Basic unit of storage; composed of rows  Table

Gives alternative names to objectsSynonym 

Improves the performance of data retrieval 
queries 

Index

DescriptionObject

Database Objects

There are several other objects in a database in addition to tables. 

With views, you can present and hide data from the tables.

Many applications require the use of unique numbers as primary key values. You can either build 
code into the application to handle this requirement or use a sequence to generate unique numbers.

If you want to improve the performance of data retrieval queries, you should consider creating an 
index. You can also use indexes to enforce uniqueness on a column or a collection of columns.

You can provide alternative names for objects by using synonyms.



Oracle Database 11g: SQL Fundamentals I 11 - 5

Copyright © 2009, Oracle. All rights reserved.

What Is a View?

EMPLOYEES table

What Is a View?

You can present logical subsets or combinations of data by creating views of tables. A view is a 
logical table based on a table or another view. A view contains no data of its own, but is like a 
window through which data from tables can be viewed or changed. The tables on which a view is 
based are called base tables. The view is stored as a SELECT statement in the data dictionary.



Oracle Database 11g: SQL Fundamentals I 11 - 6

Copyright © 2009, Oracle. All rights reserved.

Advantages of Views

To restrict 
data access

To make complex 
queries easy

To provide 
data 

independence

To present 
different views of 

the same data

Advantages of Views

• Views restrict access to the data because it displays selected columns from the table.
• Views can be used to make simple queries to retrieve the results of complicated queries. For 

example, views can be used to query information from multiple tables without the user knowing 
how to write a join statement.

• Views provide data independence for ad hoc users and application programs. One view can be 
used to retrieve data from several tables.

• Views provide groups of users access to data according to their particular criteria.

For more information, see the section on “CREATE VIEW” in Oracle Database SQL Language 
Reference 11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I 11 - 7

Copyright © 2009, Oracle. All rights reserved.

Simple Views and Complex Views

Yes

No

No

One

Simple Views

YesContain functions

YesContain groups of data

One or moreNumber of tables

Not alwaysDML operations through a 
view

Complex ViewsFeature

Simple Views and Complex Views

There are two classifications for views: simple and complex. The basic difference is related to the 
DML (INSERT, UPDATE, and DELETE) operations.

• A simple view is one that:
- Derives data from only one table
- Contains no functions or groups of data
- Can perform DML operations through the view

• A complex view is one that:
- Derives data from many tables
- Contains functions or groups of data
- Does not always allow DML operations through the view



Oracle Database 11g: SQL Fundamentals I 11 - 8

Copyright © 2009, Oracle. All rights reserved.

Creating a View

• You embed a subquery in the CREATE VIEW statement:

• The subquery can contain complex SELECT syntax.

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view
[(alias[, alias]...)]
AS subquery
[WITH CHECK OPTION [CONSTRAINT constraint]]
[WITH READ ONLY [CONSTRAINT constraint]];

Creating a View

You can create a view by embedding a subquery in the CREATE VIEW statement.

In the syntax:
OR REPLACE Re-creates the view if it already exists
FORCE Creates the view regardless of whether or not the base tables exist
NOFORCE Creates the view only if the base tables exist (This is the default.)
view Is the name of the view
alias Specifies names for the expressions selected by the view’s query

(The number of aliases must match the number of expressions selected by the 
view.)

subquery Is a complete SELECT statement (You can use aliases for the 
columns in the SELECT list.)

WITH CHECK OPTION Specifies that only those rows that are accessible to the view can 
be inserted or updated

constraint Is the name assigned to the CHECK OPTION constraint
WITH READ ONLY Ensures that no DML operations can be performed on this view

Note: In SQL Developer, click the Run Script icon or press [F5] to run the data definition language 
(DDL) statements. The feedback messages will be shown on the Script Output tabbed page. 



Oracle Database 11g: SQL Fundamentals I 11 - 9

Copyright © 2009, Oracle. All rights reserved.

Creating a View

• Create the EMPVU80 view, which contains details of the 
employees in department 80:

• Describe the structure of the view by using the SQL*Plus 
DESCRIBE command:

DESCRIBE empvu80

CREATE VIEW empvu80
AS SELECT  employee_id, last_name, salary

FROM    employees
WHERE   department_id = 80;

Creating a View (continued)

The example in the slide creates a view that contains the employee number, last name, and salary for 
each employee in department 80. 

You can display the structure of the view by using the DESCRIBE command.

Guidelines
• The subquery that defines a view can contain complex SELECT syntax, including joins, groups, 

and subqueries.
• If you do not specify a constraint name for the view created with the WITH CHECK OPTION, 

the system assigns a default name in the SYS_Cn format.
• You can use the OR REPLACE option to change the definition of the view without dropping and 

re-creating it, or regranting the object privileges previously granted on it.



Oracle Database 11g: SQL Fundamentals I 11 - 10

Copyright © 2009, Oracle. All rights reserved.

Creating a View

• Create a view by using column aliases in the subquery:

• Select the columns from this view by the given alias 
names.

CREATE VIEW salvu50
AS SELECT  employee_id ID_NUMBER, last_name NAME,

salary*12 ANN_SALARY
FROM    employees
WHERE   department_id = 50;

Creating a View (continued)

You can control the column names by including column aliases in the subquery. 

The example in the slide creates a view containing the employee number (EMPLOYEE_ID) with the 
alias ID_NUMBER, name (LAST_NAME) with the alias NAME, and annual salary (SALARY) with the 
alias ANN_SALARY for every employee in department 50. 

Alternatively, you can use an alias after the CREATE statement and before the SELECT subquery. 
The number of aliases listed must match the number of expressions selected in the subquery. 

CREATE OR REPLACE VIEW salvu50 (ID_NUMBER, NAME, ANN_SALARY)
AS SELECT  employee_id, last_name, salary*12

FROM    employees
WHERE   department_id = 50;



Oracle Database 11g: SQL Fundamentals I 11 - 11

Copyright © 2009, Oracle. All rights reserved.

SELECT *
FROM   salvu50;

Retrieving Data from a View

Retrieving Data from a View

You can retrieve data from a view as you would from any table. You can display either the contents 
of the entire view or just specific rows and columns.



Oracle Database 11g: SQL Fundamentals I 11 - 12

Copyright © 2009, Oracle. All rights reserved.

Modifying a View

• Modify the EMPVU80 view by using a CREATE OR REPLACE
VIEW clause. Add an alias for each column name:

• Column aliases in the CREATE OR REPLACE VIEW clause 
are listed in the same order as the columns in the 
subquery.

CREATE OR REPLACE VIEW empvu80
(id_number, name, sal, department_id)

AS SELECT  employee_id, first_name || ' ' 
|| last_name, salary, department_id

FROM    employees
WHERE   department_id = 80;

Modifying a View

With the OR REPLACE option, a view can be created even if one exists with this name already, thus 
replacing the old version of the view for its owner. This means that the view can be altered without 
dropping, re-creating, and regranting object privileges.

Note: When assigning column aliases in the CREATE OR REPLACE VIEW clause, remember that the 
aliases are listed in the same order as the columns in the subquery.



Oracle Database 11g: SQL Fundamentals I 11 - 13

Copyright © 2009, Oracle. All rights reserved.

Creating a Complex View

Create a complex view that contains group functions to display 
values from two tables:

CREATE OR REPLACE VIEW dept_sum_vu
(name, minsal, maxsal, avgsal)

AS SELECT   d.department_name, MIN(e.salary), 
MAX(e.salary),AVG(e.salary)

FROM     employees e JOIN departments d
ON       (e.department_id = d.department_id)
GROUP BY d.department_name;

Creating a Complex View

The example in the slide creates a complex view of department names, minimum salaries, maximum 
salaries, and the average salaries by department. Note that alternative names have been specified for 
the view. This is a requirement if any column of the view is derived from a function or an expression.

You can view the structure of the view by using the DESCRIBE command. Display the contents of 
the view by issuing a SELECT statement.

SELECT  * 
FROM    dept_sum_vu;



Oracle Database 11g: SQL Fundamentals I 11 - 14

Copyright © 2009, Oracle. All rights reserved.

Rules for Performing DML Operations on a View

• You can usually perform DML operations on
simple views.

• You cannot remove a row if the view contains the 
following:
– Group functions
– A GROUP BY clause

– The DISTINCT keyword

– The pseudocolumn ROWNUM keyword

Rules for Performing DML Operations on a View

• You can perform DML operations on data through a view if those operations follow certain 
rules.

• You can remove a row from a view unless it contains any of the following:
- Group functions
- A GROUP BY clause
- The DISTINCT keyword
- The pseudocolumn ROWNUM keyword



Oracle Database 11g: SQL Fundamentals I 11 - 15

Copyright © 2009, Oracle. All rights reserved.

Rules for Performing DML Operations on a View

You cannot modify data in a view if it contains:

• Group functions
• A GROUP BY clause

• The DISTINCT keyword

• The pseudocolumn ROWNUM keyword

• Columns defined by expressions

Rules for Performing DML Operations on a View (continued)

You can modify data through a view unless it contains any of the conditions mentioned in the 
previous slide or columns defined by expressions (for example, SALARY * 12).



Oracle Database 11g: SQL Fundamentals I 11 - 16

Copyright © 2009, Oracle. All rights reserved.

Rules for Performing DML Operations on a View

You cannot add data through a view if the view includes:

• Group functions
• A GROUP BY clause

• The DISTINCT keyword

• The pseudocolumn ROWNUM keyword

• Columns defined by expressions
• NOT NULL columns in the base tables that are not selected 

by the view

Rules for Performing DML Operations on a View (continued)

You can add data through a view unless it contains any of the items listed in the slide. You cannot 
add data to a view if the view contains NOT NULL columns without default values in the base table. 
All the required values must be present in the view. Remember that you are adding values directly to 
the underlying table through the view.

For more information, see the section on “CREATE VIEW” in Oracle Database SQL Language 
Reference 11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I 11 - 17

Copyright © 2009, Oracle. All rights reserved.

Using the WITH CHECK OPTION Clause

• You can ensure that DML operations performed on the 
view stay in the domain of the view by using the WITH
CHECK OPTION clause:

• Any attempt to INSERT a row with a department_id
other than 20, or to UPDATE the department number for 
any row in the view fails because it violates the WITH
CHECK OPTION constraint.

CREATE OR REPLACE VIEW empvu20
AS SELECT *

FROM     employees
WHERE    department_id = 20
WITH CHECK OPTION CONSTRAINT empvu20_ck ;

Using the WITH CHECK OPTION Clause

It is possible to perform referential integrity checks through views. You can also enforce constraints 
at the database level. The view can be used to protect data integrity, but the use is very limited.

The WITH CHECK OPTION clause specifies that INSERTs and UPDATEs performed through the 
view cannot create rows that the view cannot select. Therefore, it enables integrity constraints and 
data validation checks to be enforced on data being inserted or updated. If there is an attempt to 
perform DML operations on rows that the view has not selected, an error is displayed, along with the 
constraint name if that has been specified.

UPDATE empvu20
SET    department_id = 10
WHERE  employee_id = 201;

causes:

Note: No rows are updated because, if the department number were to change to 10, the view would 
no longer be able to see that employee. With the WITH CHECK OPTION clause, therefore, the view 
can see only the employees in department 20 and does not allow the department number for those 
employees to be changed through the view.



Oracle Database 11g: SQL Fundamentals I 11 - 18

Copyright © 2009, Oracle. All rights reserved.

Denying DML Operations

• You can ensure that no DML operations occur by adding 
the WITH READ ONLY option to your view definition.

• Any attempt to perform a DML operation on any row in the 
view results in an Oracle server error.

Denying DML Operations

You can ensure that no DML operations occur on your view by creating it with the WITH READ 
ONLY option. The example in the next slide modifies the EMPVU10 view to prevent any DML 
operations on the view.



Oracle Database 11g: SQL Fundamentals I 11 - 19

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE VIEW empvu10
(employee_number, employee_name, job_title)

AS SELECT employee_id, last_name, job_id
FROM     employees
WHERE    department_id = 10
WITH READ ONLY ;

Denying DML Operations

Denying DML Operations (continued)

Any attempt to remove a row from a view with a read-only constraint results in an error: 

DELETE FROM empvu10
WHERE  employee_number = 200;

Similarly, any attempt to insert a row or modify a row using the view with a read-only constraint 
results in the same error.



Oracle Database 11g: SQL Fundamentals I 11 - 20

Copyright © 2009, Oracle. All rights reserved.

Removing a View

You can remove a view without losing data because a view is 
based on underlying tables in the database.

DROP VIEW view;

DROP VIEW empvu80;

Removing a View

You use the DROP VIEW statement to remove a view. The statement removes the view definition 
from the database. However, dropping views has no effect on the tables on which the view was 
based. Alternatively, views or other applications based on the deleted views become invalid. Only the 
creator or a user with the DROP ANY VIEW privilege can remove a view.

In the syntax, view is the name of the view.



Oracle Database 11g: SQL Fundamentals I 11 - 21

Copyright © 2009, Oracle. All rights reserved.

Practice 11: Overview of Part 1

This practice covers the following topics:

• Creating a simple view

• Creating a complex view

• Creating a view with a check constraint

• Attempting to modify data in the view

• Removing views

Practice 11: Overview of Part 1

Part 1 of this lesson’s practice provides you with a variety of exercises in creating, using, and 
removing views. Complete questions 1–6 at the end of this lesson.



Oracle Database 11g: SQL Fundamentals I 11 - 22

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Overview of views:
– Creating, modifying, and retrieving data from a view

– DML operations on a view

– Dropping a view

• Overview of sequences:
– Creating, using, and modifying a sequence

– Cache sequence values
– NEXTVAL and CURRVAL pseudocolumns

• Overview of indexes
– Creating, dropping indexes

• Overview of synonyms
– Creating, dropping synonyms



Oracle Database 11g: SQL Fundamentals I 11 - 23

Copyright © 2009, Oracle. All rights reserved.

Sequences

Logically represents subsets of data from one or 
more tables

View 

Generates numeric valuesSequence 

Basic unit of storage; composed of rows  Table

Gives alternative names to objectsSynonym 

Improves the performance of some queriesIndex

DescriptionObject

Sequences

A sequence is a database object that creates integer values. You can create sequences and then use 
them to generate numbers. 



Oracle Database 11g: SQL Fundamentals I 11 - 24

Copyright © 2009, Oracle. All rights reserved.

Sequences

A sequence:

• Can automatically generate unique numbers

• Is a shareable object

• Can be used to create a primary key value

• Replaces application code

• Speeds up the efficiency of accessing sequence values 
when cached in memory

2 4

3 5

6 8

7

10

91

Sequences (continued)

A sequence is a user-created database object that can be shared by multiple users to generate 
integers. 

You can define a sequence to generate unique values or to recycle and use the same numbers again.

A typical usage for sequences is to create a primary key value, which must be unique for each row. A 
sequence is generated and incremented (or decremented) by an internal Oracle routine. This can be a 
time-saving object because it can reduce the amount of application code needed to write a sequence-
generating routine.

Sequence numbers are stored and generated independent of tables. Therefore, the same sequence can 
be used for multiple tables.



Oracle Database 11g: SQL Fundamentals I 11 - 25

Copyright © 2009, Oracle. All rights reserved.

CREATE SEQUENCE Statement: Syntax

Define a sequence to generate sequential numbers 
automatically:

CREATE SEQUENCE sequence
[INCREMENT BY n]
[START WITH n]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

CREATE SEQUENCE Statement: Syntax

Automatically generate sequential numbers by using the CREATE SEQUENCE statement.

In the syntax:
sequence Is the name of the sequence generator
INCREMENT BY n Specifies the interval between sequence numbers, where 

n is an integer (If this clause is omitted, the sequence 
increments by 1.)

START WITH n Specifies the first sequence number to be generated (If  this 
clause is omitted, the sequence starts with 1.)

MAXVALUE n Specifies the maximum value the sequence can generate
NOMAXVALUE Specifies a maximum value of 10^27 for an ascending 

sequence and –1 for a descending sequence (This is the 
default option.)

MINVALUE n Specifies the minimum sequence value
NOMINVALUE Specifies a minimum value of 1 for an ascending sequence 

and –(10^26) for a descending sequence (This is the default 
option.)



Oracle Database 11g: SQL Fundamentals I 11 - 26

Copyright © 2009, Oracle. All rights reserved.

Creating a Sequence

• Create a sequence named DEPT_DEPTID_SEQ to be used 
for the primary key of the DEPARTMENTS table.

• Do not use the CYCLE option.

CREATE SEQUENCE dept_deptid_seq
INCREMENT BY 10
START WITH 120
MAXVALUE 9999
NOCACHE
NOCYCLE;

Creating a Sequence (continued)

CYCLE | NOCYCLE Specifies whether the sequence continues to generate 
values after reaching its maximum or minimum value 
(NOCYCLE is the default option.)

CACHE n | NOCACHE Specifies how many values the Oracle server preallocates 
and keeps in memory (By default, the Oracle server 
caches 20 values.)

The example in the slide creates a sequence named DEPT_DEPTID_SEQ to be used for the 
DEPARTMENT_ID column of the DEPARTMENTS table. The sequence starts at 120, does not allow 
caching, and does not cycle.

Do not use the CYCLE option if the sequence is used to generate primary key values, unless you have 
a reliable mechanism that purges old rows faster than the sequence cycles.

For more information, see the section on “CREATE SEQUENCE” in the Oracle Database SQL 
Language Reference 11g, Release 1 (11.1).
Note: The sequence is not tied to a table. Generally, you should name the sequence after its intended 
use. However, the sequence can be used anywhere, regardless of its name.



Oracle Database 11g: SQL Fundamentals I 11 - 27

Copyright © 2009, Oracle. All rights reserved.

NEXTVAL and CURRVAL Pseudocolumns

• NEXTVAL returns the next available sequence value. It 
returns a unique value every time it is referenced, even for 
different users.

• CURRVAL obtains the current sequence value.

• NEXTVAL must be issued for that sequence before 
CURRVAL contains a value.

NEXTVAL and CURRVAL Pseudocolumns

After you create your sequence, it generates sequential numbers for use in your tables. Reference the 
sequence values by using the NEXTVAL and CURRVAL pseudocolumns.

The NEXTVAL pseudocolumn is used to extract successive sequence numbers from a specified
sequence. You must qualify NEXTVAL with the sequence name. When you reference 
sequence.NEXTVAL, a new sequence number is generated and the current sequence number is 
placed in CURRVAL.

The CURRVAL pseudocolumn is used to refer to a sequence number that the current user has just 
generated. However, NEXTVAL must be used to generate a sequence number in the current user’s 
session before CURRVAL can be referenced. You must qualify CURRVAL with the sequence name. 
When you reference sequence.CURRVAL, the last value returned to that user’s process is 
displayed.



Oracle Database 11g: SQL Fundamentals I 11 - 28

NEXTVAL and CURRVAL Pseudocolumns (continued)

Rules for Using NEXTVAL and CURRVAL

You can use NEXTVAL and CURRVAL in the following contexts:
• The SELECT list of a SELECT statement that is not part of a subquery
• The SELECT list of a subquery in an INSERT statement
• The VALUES clause of an INSERT statement
• The SET clause of an UPDATE statement

You cannot use NEXTVAL and CURRVAL in the following contexts:
• The SELECT list of a view
• A SELECT statement with the DISTINCT keyword
• A SELECT statement with GROUP BY, HAVING, or ORDER BY clauses
• A subquery in a SELECT, DELETE, or UPDATE statement
• The DEFAULT expression in a CREATE TABLE or ALTER TABLE statement

For more information, see the sections on “Pseudocolumns” and “CREATE SEQUENCE” in Oracle 
Database SQL Language Reference 11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I 11 - 29

Copyright © 2009, Oracle. All rights reserved.

Using a Sequence

• Insert a new department named “Support” in location ID 
2500:

• View the current value for the DEPT_DEPTID_SEQ
sequence:

INSERT INTO departments(department_id, 
department_name, location_id)

VALUES      (dept_deptid_seq.NEXTVAL, 
'Support', 2500);

SELECT dept_deptid_seq.CURRVAL
FROM dual;

Using a Sequence

The example in the slide inserts a new department in the DEPARTMENTS table. It uses the 
DEPT_DEPTID_SEQ sequence to generate a new department number as follows. 

You can view the current value of the sequence using the sequence_name.CURRVAL, as shown in the 
second example in the slide. The output of the query is shown below:

Suppose that you now want to hire employees to staff the new department. The INSERT statement to 
be executed for all new employees can include the following code:
INSERT INTO employees (employee_id, department_id, ...)
VALUES (employees_seq.NEXTVAL, dept_deptid_seq .CURRVAL, ...);

Note: The preceding example assumes that a sequence called EMPLOYEE_SEQ has already been 
created to generate new employee numbers.



Oracle Database 11g: SQL Fundamentals I 11 - 30

Copyright © 2009, Oracle. All rights reserved.

Caching Sequence Values

• Caching sequence values in memory gives faster access 
to those values.

• Gaps in sequence values can occur when:
– A rollback occurs

– The system crashes

– A sequence is used in another table

Caching Sequence Values

You can cache sequences in memory to provide faster access to those sequence values. The cache is 
populated the first time you refer to the sequence. Each request for the next sequence value is 
retrieved from the cached sequence. After the last sequence value is used, the next request for the 
sequence pulls another cache of sequences into memory.

Gaps in the Sequence

Although sequence generators issue sequential numbers without gaps, this action occurs independent 
of a commit or rollback. Therefore, if you roll back a statement containing a sequence, the number is 
lost.

Another event that can cause gaps in the sequence is a system crash. If the sequence caches values in 
memory, those values are lost if the system crashes.

Because sequences are not tied directly to tables, the same sequence can be used for multiple tables. 
However, if you do so, each table can contain gaps in the sequential numbers.



Oracle Database 11g: SQL Fundamentals I 11 - 31

Copyright © 2009, Oracle. All rights reserved.

Modifying a Sequence

Change the increment value, maximum value, minimum value, 
cycle option, or cache option:

ALTER SEQUENCE dept_deptid_seq
INCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;

Modifying a Sequence

If you reach the MAXVALUE limit for your sequence, no additional values from the sequence are 
allocated and you will receive an error indicating that the sequence exceeds the MAXVALUE. To 
continue to use the sequence, you can modify it by using the ALTER SEQUENCE statement.

Syntax
ALTER  SEQUENCE sequence

[INCREMENT BY n]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

In the syntax, sequence is the name of the sequence generator.

For more information, see the section on “ALTER SEQUENCE” in Oracle Database SQL Language 
Reference 11g, Release 1 (11.1). 



Oracle Database 11g: SQL Fundamentals I 11 - 32

Copyright © 2009, Oracle. All rights reserved.

Guidelines for Modifying a Sequence

• You must be the owner or have the ALTER privilege for the 
sequence.

• Only future sequence numbers are affected.

• The sequence must be dropped and re-created to restart 
the sequence at a different number.

• Some validation is performed.
• To remove a sequence, use the DROP statement:

DROP SEQUENCE dept_deptid_seq;

Guidelines for Modifying a Sequence

• You must be the owner or have the ALTER privilege for the sequence to modify it. You must be 
the owner or have the DROP ANY SEQUENCE privilege to remove it.

• Only future sequence numbers are affected by the ALTER SEQUENCE statement.
• The START WITH option cannot be changed using ALTER SEQUENCE. The sequence must be 

dropped and re-created to restart the sequence at a different number.
• Some validation is performed. For example, a new MAXVALUE that is less than the current 

sequence number cannot be imposed.
ALTER SEQUENCE dept_deptid_seq

INCREMENT BY 20
MAXVALUE 90
NOCACHE
NOCYCLE;

• The error:



Oracle Database 11g: SQL Fundamentals I 11 - 33

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Overview of views:
– Creating, modifying, and retrieving data from a view

– DML operations on a view

– Dropping a view

• Overview of sequences:
– Creating, using, and modifying a sequence

– Cache sequence values
– NEXTVAL and CURRVAL pseudocolumns

• Overview of indexes
– Creating, dropping indexes

• Overview of synonyms
– Creating, dropping synonyms



Oracle Database 11g: SQL Fundamentals I 11 - 34

Copyright © 2009, Oracle. All rights reserved.

Indexes

Logically represents subsets of data from one or 
more tables

View 

Generates numeric valuesSequence 

Basic unit of storage; composed of rows  Table

Gives alternative names to objectsSynonym 

Improves the performance of some queriesIndex

DescriptionObject

Indexes

Indexes are database objects that you can create to improve the performance of some queries. 
Indexes can also be created automatically by the server when you create a primary key or a unique 
constraint.



Oracle Database 11g: SQL Fundamentals I 11 - 35

Copyright © 2009, Oracle. All rights reserved.

Indexes

An index:

• Is a schema object

• Can be used by the Oracle server to speed up the retrieval 
of rows by using a pointer

• Can reduce disk input/output (I/O) by using a rapid path 
access method to locate data quickly

• Is independent of the table that it indexes

• Is used and maintained automatically by the Oracle server

Indexes (continued)

An Oracle server index is a schema object that can speed up the retrieval of rows by using a pointer. 
Indexes can be created explicitly or automatically. If you do not have an index on the column, a full 
table scan occurs.

An index provides direct and fast access to rows in a table. Its purpose is to reduce the disk I/O by 
using an indexed path to locate data quickly. An index is used and maintained automatically by the 
Oracle server. After an index is created, no direct activity is required by the user.

Indexes are logically and physically independent of the table that they index. This means that they 
can be created or dropped at any time, and have no effect on the base tables or other indexes.

Note: When you drop a table, the corresponding indexes are also dropped.

For more information, see the section on “Schema Objects: Indexes” in Oracle Database Concepts
11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I 11 - 36

Copyright © 2009, Oracle. All rights reserved.

How Are Indexes Created?

• Automatically: A unique index is created automatically 
when you define a PRIMARY KEY or UNIQUE constraint in 
a table definition.

• Manually: Users can create nonunique indexes on 
columns to speed up access to the rows.

How Are Indexes Created?

You can create two types of indexes. 
• Unique index: The Oracle server automatically creates this index when you define a column in 

a table to have a PRIMARY KEY or a UNIQUE constraint. The name of the index is the name 
that is given to the constraint.

• Nonunique index: This is an index that a user can create. For example, you can create the 
FOREIGN KEY column index for a join in a query to improve the speed of retrieval. 

Note: You can manually create a unique index, but it is recommended that you create a unique 
constraint, which implicitly creates a unique index.



Oracle Database 11g: SQL Fundamentals I 11 - 37

Copyright © 2009, Oracle. All rights reserved.

Creating an Index

• Create an index on one or more columns:

• Improve the speed of query access to the LAST_NAME
column in the EMPLOYEES table:

CREATE INDEX emp_last_name_idx
ON employees(last_name);

CREATE [UNIQUE][BITMAP]INDEX index
ON table (column[, column]...);

Creating an Index

Create an index on one or more columns by issuing the CREATE INDEX statement.

In the syntax:
• index Is the name of the index
• table Is the name of the table
• column Is the name of the column in the table to be indexed

Specify UNIQUE to indicate that the value of the column (or columns) upon which the index is based 
must be unique. Specify BITMAP to indicate that the index is to be created with a bitmap for each 
distinct key, rather than indexing each row separately. Bitmap indexes store the rowids associated 
with a key value as a bitmap.

For more information, see the section on “CREATE INDEX” in Oracle Database SQL Language 
Reference 11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I 11 - 38

Copyright © 2009, Oracle. All rights reserved.

Index Creation Guidelines

Do not create an index when:

The columns are not often used as a condition in the query

The table is small or most queries are expected to retrieve more than 2% 
to 4% of the rows in the table

The table is updated frequently

A column contains a large number of null values

One or more columns are frequently used together in a WHERE clause or 
a join condition

A column contains a wide range of values

The indexed columns are referenced as part of an expression

The table is large and most queries are expected to retrieve less than 2%
to 4% of the rows in the table

Create an index when:

Index Creation Guidelines

More Is Not Always Better

Having more indexes on a table does not produce faster queries. Each DML operation that is 
committed on a table with indexes means that the indexes must be updated. The more indexes that 
you have associated with a table, the more effort the Oracle server must make to update all the 
indexes after a DML operation.

When to Create an Index

Therefore, you should create indexes only if:
• The column contains a wide range of values
• The column contains a large number of null values
• One or more columns are frequently used together in a WHERE clause or join condition
• The table is large and most queries are expected to retrieve less than 2% to 4% of the rows

Remember that if you want to enforce uniqueness, you should define a unique constraint in the table 
definition. A unique index is then created automatically.



Oracle Database 11g: SQL Fundamentals I 11 - 39

Copyright © 2009, Oracle. All rights reserved.

Removing an Index

• Remove an index from the data dictionary by using the 
DROP INDEX command:

• Remove the emp_last_name_idx index from the data 
dictionary:

• To drop an index, you must be the owner of the index or 
have the DROP ANY INDEX privilege.

DROP INDEX emp_last_name_idx;

DROP INDEX index;

Removing an Index

You cannot modify indexes. To change an index, you must drop it and then re-create it. 

Remove an index definition from the data dictionary by issuing the DROP INDEX statement. To drop 
an index, you must be the owner of the index or have the DROP ANY INDEX privilege.

In the syntax, index is the name of the index.

Note: If you drop a table, indexes and constraints are automatically dropped but views and sequences 
remain.



Oracle Database 11g: SQL Fundamentals I 11 - 40

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Overview of views:
– Creating, modifying, and retrieving data from a view

– DML operations on a view

– Dropping a view

• Overview of sequences:
– Creating, using, and modifying a sequence

– Cache sequence values
– NEXTVAL and CURRVAL pseudocolumns

• Overview of indexes
– Creating, dropping indexes

• Overview of synonyms
– Creating, dropping synonyms



Oracle Database 11g: SQL Fundamentals I 11 - 41

Copyright © 2009, Oracle. All rights reserved.

Synonyms

Logically represents subsets of data from one or 
more tables

View 

Generates numeric valuesSequence 

Basic unit of storage; composed of rows  Table

Gives alternative names to objectsSynonym 

Improves the performance of some queriesIndex

DescriptionObject

Synonyms

Synonyms are database objects that enable you to call a table by another name. You can create 
synonyms to give an alternative name to a table.



Oracle Database 11g: SQL Fundamentals I 11 - 42

Copyright © 2009, Oracle. All rights reserved.

Creating a Synonym for an Object

Simplify access to objects by creating a synonym (another 
name for an object). With synonyms, you can:

• Create an easier reference to a table that is owned by 
another user

• Shorten lengthy object names

CREATE [PUBLIC] SYNONYM synonym
FOR    object;

Creating a Synonym for an Object

To refer to a table that is owned by another user, you need to prefix the table name with the name of 
the user who created it, followed by a period. Creating a synonym eliminates the need to qualify the 
object name with the schema and provides you with an alternative name for a table, view, sequence, 
procedure, or other objects. This method can be especially useful with lengthy object names, such as 
views.

In the syntax:
PUBLIC Creates a synonym that is accessible to all users
synonym Is the name of the synonym to be created
object Identifies the object for which the synonym is created

Guidelines
• The object cannot be contained in a package.
• A private synonym name must be distinct from all other objects that are owned by the same user.

For more information, see the section on “CREATE SYNONYM” in Oracle Database SQL Language 
Reference 11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I 11 - 43

Copyright © 2009, Oracle. All rights reserved.

Creating and Removing Synonyms

• Create a shortened name for the DEPT_SUM_VU view:

• Drop a synonym:

CREATE SYNONYM  d_sum
FOR  dept_sum_vu;

DROP SYNONYM d_sum;

Creating and Removing Synonyms

Creating a Synonym

The slide example creates a synonym for the DEPT_SUM_VU view for quicker reference.

The database administrator can create a public synonym that is accessible to all users. The following 
example creates a public synonym named DEPT for Alice’s DEPARTMENTS table:

CREATE PUBLIC SYNONYM  dept
FOR    alice.departments;

Removing a Synonym

To remove a synonym, use the DROP SYNONYM statement. Only the database administrator can drop 
a public synonym.

DROP PUBLIC SYNONYM  dept;

For more information, see the section on “DROP SYNONYM” in Oracle Database SQL Language 
Reference 11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I 11 - 44

Copyright © 2009, Oracle. All rights reserved.

Quiz

Indexes must be created manually and serve to speed up 
access to rows in a table.

1. True

2. False

Answer: 2

Note: Indexes are designed to speed up query performance. However, not all indexes are created 
manually. The Oracle server automatically creates an index when you define a column in a table to 
have a PRIMARY KEY or a UNIQUE constraint.



Oracle Database 11g: SQL Fundamentals I 11 - 45

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Create, use, and remove views

• Automatically generate sequence numbers by using a 
sequence generator

• Create indexes to improve speed of query retrieval

• Use synonyms to provide alternative names for objects

Summary

In this lesson, you should have learned about database objects such as views, sequences, indexes, and 
synonyms.



Oracle Database 11g: SQL Fundamentals I 11 - 46

Copyright © 2009, Oracle. All rights reserved.

Practice 11: Overview of Part 2

This practice covers the following topics:

• Creating sequences

• Using sequences

• Creating nonunique indexes

• Creating synonyms

Practice 11: Overview of Part 2

Part 2 of this lesson’s practice provides you with a variety of exercises in creating and using a 
sequence, an index, and a synonym.

Complete questions 7–10 at the end of this lesson.



 

Appendix A
Practices and Solutions

 
 
 



 

Oracle Database 11g: SQL Fundamentals I   A - 2 

Table of Contents 
 

Practices for Lesson I................................................................................................................ 3 
Practice I-1: Introduction ................................................................................................ 4 
Practice Solutions I-1: Introduction ................................................................................ 5 

Practices for Lesson 1 ............................................................................................................. 11 
Practice 1-1: Retrieving Data Using the SQL SELECT Statement .............................. 12 
Practice Solutions 1-1: Retrieving Data Using the SQL SELECT Statement .............. 16 

Practices for Lesson 2 ............................................................................................................. 19 
Practice 2-1: Restricting and Sorting Data.................................................................... 20 
Practice Solutions 2-1: Restricting and Sorting Data ................................................... 24 

Practices for Lesson 3 ............................................................................................................. 27 
Practice 3-1: Using Single-Row Functions to Customize Output ................................ 28 
Practice Solutions 3-1: Using Single-Row Functions to Customize Output ................ 32 

Practices for Lesson 4 ............................................................................................................. 35 
Practice 4-1: Using Conversion Functions and Conditional Expressions .................... 36 
Practice Solutions 4-1: Using Conversion Functions and Conditional Expressions .... 39 

Practices for Lesson 5 ............................................................................................................. 41 
Practice 5-1: Reporting Aggregated Data Using the Group Functions......................... 42 
Practice Solutions 5-1: Reporting Aggregated Data Using the Group Functions ........ 45 

Practices for Lesson 6 ............................................................................................................. 48 
Practice 6-1: Displaying Data from Multiple Tables Using Joins ................................ 49 
Practice Solutions 6-1: Displaying Data from Multiple Tables Using Joins ................ 52 

Practices for Lesson 7 ............................................................................................................. 54 
Practice 7-1: Using Subqueries to Solve Queries ......................................................... 55 
Practice Solutions 7-1: Using Subqueries to Solve Queries ......................................... 57 

Practices for Lesson 8 ............................................................................................................. 59 
Practice 8-1: Using the Set Operators........................................................................... 60 
Practice Solutions 8-1: Using the Set Operators........................................................... 62 

Practices for Lesson 9 ............................................................................................................. 64 
Practice 9-1: Manipulating Data ................................................................................... 65 
Practice Solutions 9-1: Manipulating Data ................................................................... 69 

Practices for Lesson 10 ........................................................................................................... 73 
Practice 10-1: Using DDL Statements to Create and Manage Tables .......................... 74 
Practice Solutions 10-1: Using DDL Statements to Create and Manage Tables.......... 76 

Practices for Lesson 11 ........................................................................................................... 79 
Practice 11-1: Creating Other Schema Objects ............................................................ 80 
Practice Solutions 11-1: Creating Other Schema Objects ............................................ 82 

Practices for Appendix F ........................................................................................................ 84 
Practice F-1: Oracle Join Syntax................................................................................... 85 
Practice Solutions F-1: Oracle Join Syntax .................................................................. 88 

 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 3 

Practices for Lesson I 
In this practice, you perform the following: 

• Start Oracle SQL Developer and create a new connection to the ora1 account. 
• Use Oracle SQL Developer to examine data objects in the ora1 account. The 

ora1 account contains the HR schema tables.  
 
Note the following location for the lab files: 
 \home\oracle\labs\sql1\labs 
If you are asked to save any lab files, save them in this location. 
 
In any practice, there may be exercises that are prefaced with the phrases “If you have 
time” or “If you want an extra challenge.” Work on these exercises only if you have 
completed all other exercises within the allocated time and would like a further challenge 
to your skills. 
 
Perform the practices slowly and precisely. You can experiment with saving and running 
command files. If you have any questions at any time, ask your instructor. 
 
Note 

1) All written practices use Oracle SQL Developer as the development environment. 
Although it is recommended that you use Oracle SQL Developer, you can also use 
SQL*Plus that is available in this course. 

2) For any query, the sequence of rows retrieved from the database may differ from the 
screenshots shown. 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 4 

Practice I-1: Introduction 
This is the first of many practices in this course. The solutions (if you require them) can 
be found at the end of this practice. Practices are intended to cover most of the topics that 
are presented in the corresponding lesson. 
 
Starting Oracle SQL Developer 

1) Start Oracle SQL Developer using the SQL Developer desktop icon.   

Creating a New Oracle SQL Developer Database Connection 

2) To create a new database connection, in the Connections Navigator, right-click 
Connections. Select New Connection from the menu. The New/Select Database 
Connection dialog box appears. 

3) Create a database connection using the following information: 

a) Connection Name: myconnection 

b) Username: ora1 

c) Password: ora1 

d) Hostname: localhost 

e) Port: 1521 

f) SID: ORCL 

Ensure that you select the Save Password check box. 
 
Testing and Connecting Using the Oracle SQL Developer Database Connection  

4) Test the new connection.  

5) If the status is Success, connect to the database using this new connection. 

Browsing the Tables in the Connections Navigator 

6) In the Connections Navigator, view the objects available to you in the Tables node. 
Verify that the following tables are present: 

COUNTRIES 
DEPARTMENTS 
EMPLOYEES 
JOB_GRADES 
JOB_HISTORY 
JOBS 
LOCATIONS 
REGIONS 

7) Browse the structure of the EMPLOYEES table. 

8) View the data of the DEPARTMENTS table. 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 5 

Practice Solutions I-1: Introduction 
Starting Oracle SQL Developer 

1) Start Oracle SQL Developer using the SQL Developer desktop icon. 

a) Double-click the SQL Developer desktop icon. 

 

The SQL Developer Interface appears. 

 

Creating a New Oracle SQL Developer Database Connection 

2) To create a new database connection, in the Connections Navigator, right-click 
Connections and select New Connection from the menu.  

 

 



Practice Solutions I-1: Introduction (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 6 

The New / Select Database Connection dialog box appears. 

 

3) Create a database connection using the following information: 

a) Connection Name: myconnection 

b) Username: ora1 

c) Password: ora1 

d) Hostname: localhost 

e) Port: 1521 

f) SID: ORCL 

Ensure that you select the Save Password check box. 



Practice Solutions I-1: Introduction (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 7 

 
Testing and Connecting Using the Oracle SQL Developer Database Connection  

4) Test the new connection.  

 

5) If the status is Success, connect to the database using this new connection. 



Practice Solutions I-1: Introduction (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 8 

 

When you create a connection, a SQL Worksheet for that connection opens 
automatically. 

 

Browsing the Tables in the Connections Navigator 

6) In the Connections Navigator, view the objects available to you in the Tables node. 
Verify that the following tables are present: 

COUNTRIES 
DEPARTMENTS 
EMPLOYEES 
JOB_GRADES 
JOB_HISTORY 
JOBS 
LOCATIONS 
REGIONS 



Practice Solutions I-1: Introduction (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 9 

 

 
 
 

7) Browse the structure of the EMPLOYEES table. 

 

8) View the data of the DEPARTMENTS table. 



Practice Solutions I-1: Introduction (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 10 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 11 

Practices for Lesson 1 
In this practice, you write simple SELECT queries. The queries cover most of the SELECT 
clauses and operations that you learned in this lesson. 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 12 

Practice 1-1: Retrieving Data Using the SQL SELECT Statement 
Part 1 
 
Test your knowledge: 

1) The following SELECT statement executes successfully: 

 SELECT last_name, job_id, salary AS Sal 
 FROM   employees; 
 

  
True/False 
 

2) The following SELECT statement executes successfully: 

 SELECT *  
 FROM   job_grades; 
 

  
True/False 
 

3) There are four coding errors in the following statement. Can you identify them? 

 SELECT    employee_id, last_name 
 sal x 12  ANNUAL SALARY 
 FROM      employees; 

 

Part 2 

Note the following points before you begin with the practices: 

• Save all your lab files at the following location: 
/home/oracle/labs/sql1/labs 

• Enter your SQL statements in a SQL Worksheet. To save a script in SQL 
Developer, make sure that the required SQL worksheet is active and then from the 
File menu, select Save As to save your SQL statement as a 
lab_<lessonno>_<stepno>.sql script. When you are modifying an existing 
script, make sure that you use Save As to save it with a different file name.  

• To run the query, click the Execute Statement icon in the SQL Worksheet. 
Alternatively, you can press [F9]. For DML and DDL statements, use the Run 
Script icon or press [F5]. 

• After you have executed the query, make sure that you do not enter your next 
query in the same worksheet. Open a new worksheet. 

You have been hired as a SQL programmer for Acme Corporation. Your first task is to 
create some reports based on data from the Human Resources tables. 



Practice 1-1: Retrieving Data Using the SQL SELECT Statement 
(continued) 

Oracle Database 11g: SQL Fundamentals I   A - 13 

4) Your first task is to determine the structure of the DEPARTMENTS table and its 
contents. 

 

 

5) Determine the structure of the EMPLOYEES table. 

 

The HR department wants a query to display the last name, job ID, hire date, and 
employee ID for each employee, with the employee ID appearing first. Provide an 
alias STARTDATE for the HIRE_DATE column. Save your SQL statement to a file 
named lab_01_05.sql so that you can dispatch this file to the HR department. 

6) Test your query in the lab_01_05.sql file to ensure that it runs correctly. 

Note: After you have executed the query, make sure that you do not enter your next 
query in the same worksheet. Open a new worksheet. 



Practice 1-1: Retrieving Data Using the SQL SELECT Statement 
(continued) 

Oracle Database 11g: SQL Fundamentals I   A - 14 

 

… 

 

7) The HR department wants a query to display all unique job IDs from the EMPLOYEES 
table. 

 

Part 3       

If you have time, complete the following exercises: 

8) The HR department wants more descriptive column headings for its report on 
employees. Copy the statement from lab_01_05.sql to a new SQL Worksheet. 
Name the column headings Emp #, Employee, Job, and Hire Date, respectively. 
Then run the query again. 

 

… 



Practice 1-1: Retrieving Data Using the SQL SELECT Statement 
(continued) 

Oracle Database 11g: SQL Fundamentals I   A - 15 

 
9) The HR department has requested a report of all employees and their job IDs. Display 

the last name concatenated with the job ID (separated by a comma and space) and 
name the column Employee and Title. 

 

… 

 
 

If you want an extra challenge, complete the following exercise: 

10) To familiarize yourself with the data in the EMPLOYEES table, create a query to 
display all the data from that table. Separate each column output by a comma. Name 
the column title THE_OUTPUT. 

 

… 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 16 

Practice Solutions 1-1: Retrieving Data Using the SQL SELECT 
Statement 
Part 1 
 
Test your knowledge: 

1) The following SELECT statement executes successfully: 

 SELECT last_name, job_id, salary AS Sal 
 FROM   employees; 
 

  
True/False 
 

2) The following SELECT statement executes successfully: 

 SELECT *  
 FROM   job_grades; 
 

  
True/False 
 

3) There are four coding errors in the following statement. Can you identify them? 

 SELECT    employee_id, last_name 
 sal x 12  ANNUAL SALARY 
 FROM      employees; 

The EMPLOYEES table does not contain a column called sal. The column is 
called SALARY. 

The multiplication operator is *, not x, as shown in line 2.  

The ANNUAL SALARY alias cannot include spaces. The alias should read 
ANNUAL_SALARY or should be enclosed within double quotation marks. 

A comma is missing after the LAST_NAME column. 

Part 2 

You have been hired as a SQL programmer for Acme Corporation. Your first task is to 
create some reports based on data from the Human Resources tables. 

4) Your first task is to determine the structure of the DEPARTMENTS table and its 
contents. 

a. To determine the DEPARTMENTS table structure: 

DESCRIBE departments 
 



Practice Solutions 1-1: Retrieving Data Using the SQL SELECT 
Statement (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 17 

b. To view the data contained in the DEPARTMENTS table: 

SELECT *  
FROM   departments; 

5) Determine the structure of the EMPLOYEES table. 
DESCRIBE employees 

 

The HR department wants a query to display the last name, job ID, hire date, and 
employee ID for each employee, with the employee ID appearing first. Provide an 
alias STARTDATE for the HIRE_DATE column. Save your SQL statement to a file 
named lab_01_05.sql so that you can dispatch this file to the HR department. 

SELECT employee_id, last_name, job_id, hire_date StartDate 
FROM   employees; 

6) Test your query in the lab_01_05.sql file to ensure that it runs correctly. 

SELECT employee_id, last_name, job_id, hire_date StartDate 
FROM   employees; 

7) The HR department wants a query to display all unique job IDs from the EMPLOYEES 
table. 

SELECT DISTINCT job_id 
FROM   employees; 

 

Part 3       

If you have time, complete the following exercises: 

8) The HR department wants more descriptive column headings for its report on 
employees. Copy the statement from lab_01_05.sql to a new SQL Worksheet. 
Name the column headings Emp #, Employee, Job, and Hire Date, respectively. 
Then run the query again. 

SELECT employee_id "Emp #", last_name "Employee", 
       job_id "Job", hire_date "Hire Date" 
FROM   employees; 

9) The HR department has requested a report of all employees and their job IDs. Display 
the last name concatenated with the job ID (separated by a comma and space) and 
name the column Employee and Title. 

SELECT last_name||', '||job_id "Employee and Title" 
FROM   employees; 

 

 

 



Practice Solutions 1-1: Retrieving Data Using the SQL SELECT 
Statement (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 18 

If you want an extra challenge, complete the following exercise: 

10) To familiarize yourself with the data in the EMPLOYEES table, create a query to 
display all the data from that table. Separate each column output by a comma. Name 
the column title THE_OUTPUT. 

SELECT employee_id || ',' || first_name || ',' || last_name  
       || ',' || email || ',' || phone_number || ','|| job_id 
       || ',' || manager_id || ',' || hire_date || ','  
       || salary || ',' || commission_pct || ',' || 
department_id  
       THE_OUTPUT  
FROM   employees; 



 

Oracle Database 11g: SQL Fundamentals I   A - 19 

Practices for Lesson 2 
In this practice, you build more reports, including statements that use the WHERE clause 
and the ORDER BY clause. You make the SQL statements more reusable and generic by 
including the ampersand substitution. 



 

Oracle Database 11g: SQL Fundamentals I   A - 20 

Practice 2-1: Restricting and Sorting Data 
The HR department needs your assistance in creating some queries. 

1) Because of budget issues, the HR department needs a report that displays the last 
name and salary of employees who earn more than $12,000. Save your SQL 
statement as a file named lab_02_01.sql. Run your query. 

 

 

2) Open a new SQL Worksheet. Create a report that displays the last name and 
department number for employee number 176. Run the query. 

 

 

3) The HR department needs to find high-salary and low-salary employees. Modify 
lab_02_01.sql to display the last name and salary for any employee whose salary 
is not in the range of $5,000 to $12,000. Save your SQL statement as 
lab_02_03.sql. 

 

 

4) Create a report to display the last name, job ID, and hire date for employees with the 
last names of Matos and Taylor. Order the query in ascending order by the hire date. 

 

 



Practice 2-1: Restricting and Sorting Data (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 21 

5) Display the last name and department ID of all employees in departments 20 or 50 in 
ascending alphabetical order by name. 

 

 

6) Modify lab_02_03.sql to display the last name and salary of employees who earn 
between $5,000 and $12,000, and are in department 20 or 50. Label the columns 
Employee and Monthly Salary, respectively. Save lab_02_03.sql as 
lab_02_06.sql again. Run the statement in lab_02_06.sql. 

 

 

7) The HR department needs a report that displays the last name and hire date for all 
employees who were hired in 1994. 

 

 

8) Create a report to display the last name and job title of all employees who do not have 
a manager. 

 

 

9) Create a report to display the last name, salary, and commission of all employees who 
earn commissions. Sort data in descending order of salary and commissions. 
Use the column’s numeric position in the ORDER BY clause. 

 



Practice 2-1: Restricting and Sorting Data (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 22 

10) Members of the HR department want to have more flexibility with the queries that 
you are writing. They would like a report that displays the last name and salary of 
employees who earn more than an amount that the user specifies after a prompt. Save 
this query to a file named lab_02_10.sql. If you enter 12000 when prompted, the 
report displays the following results: 

 

 

11) The HR department wants to run reports based on a manager. Create a query that 
prompts the user for a manager ID and generates the employee ID, last name, salary, 
and department for that manager’s employees. The HR department wants the ability 
to sort the report on a selected column. You can test the data with the following 
values: 
manager_id = 103, sorted by last_name: 

 
 
manager_id = 201, sorted by salary: 

 
 
manager_id = 124, sorted by employee_id: 

 
 

 
If you have time, complete the following exercises: 

12) Display all employee last names in which the third letter of the name is “a.” 

 

 

 

 



Practice 2-1: Restricting and Sorting Data (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 23 

13) Display the last names of all employees who have both an “a” and an “e” in their last 
name. 

 
 

If you want an extra challenge, complete the following exercises: 

14) Display the last name, job, and salary for all employees whose jobs are either those of 
a sales representative or of a stock clerk, and whose salaries are not equal to $2,500, 
$3,500, or $7,000.     

 

15) Modify lab_02_06.sql to display the last name, salary, and commission for all 
employees whose commission is 20%. Save lab_02_06.sql as lab_02_15.sql 
again. Rerun the statement in lab_02_15.sql. 



 

Oracle Database 11g: SQL Fundamentals I   A - 24 

Practice Solutions 2-1: Restricting and Sorting Data 
The HR department needs your assistance in creating some queries. 

1) Because of budget issues, the HR department needs a report that displays the last 
name and salary of employees earning more than $12,000. Save your SQL statement 
as a file named lab_02_01.sql. Run your query. 

SELECT  last_name, salary 
FROM    employees  
WHERE   salary > 12000;  

2) Open a new SQL Worksheet. Create a report that displays the last name and 
department number for employee number 176. 

SELECT  last_name, department_id 
FROM    employees  
WHERE   employee_id = 176; 

3) The HR department needs to find high-salary and low-salary employees. Modify 
lab_02_01.sql to display the last name and salary for all employees whose salary 
is not in the range $5,000 through $12,000. Save your SQL statement as 
lab_02_03.sql. 

SELECT  last_name, salary 
FROM    employees  
WHERE   salary NOT BETWEEN 5000 AND 12000; 

4) Create a report to display the last name, job ID, and hire date for employees with the 
last names of Matos and Taylor. Order the query in ascending order by hire date. 

SELECT   last_name, job_id, hire_date 
FROM     employees 
WHERE    last_name IN ('Matos', 'Taylor') 
ORDER BY hire_date; 

5) Display the last name and department ID of all employees in departments 20 or 50 in 
ascending alphabetical order by name. 

SELECT   last_name, department_id 
FROM     employees 
WHERE    department_id IN (20, 50) 
ORDER BY last_name ASC; 

6) Modify lab_02_03.sql to list the last name and salary of employees who earn 
between $5,000 and $12,000, and are in department 20 or 50. Label the columns 
Employee and Monthly Salary, respectively. Save lab_02_03.sql as 
lab_02_06.sql again. Run the statement in lab_02_06.sql. 

SELECT   last_name "Employee", salary "Monthly Salary" 
FROM     employees 
WHERE    salary  BETWEEN 5000 AND 12000  
AND      department_id IN (20, 50); 



Practice Solutions 2-1: Restricting and Sorting Data (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 25 

7) The HR department needs a report that displays the last name and hire date for all 
employees who were hired in 1994. 

SELECT   last_name, hire_date 
FROM     employees 
WHERE    hire_date LIKE '%94';      

8) Create a report to display the last name and job title of all employees who do not have 
a manager. 

SELECT   last_name, job_id 
FROM     employees  
WHERE    manager_id IS NULL; 

9) Create a report to display the last name, salary, and commission for all employees 
who earn commissions. Sort data in descending order of salary and commissions. Use 
the column’s numeric position in the ORDER BY clause. 

SELECT   last_name, salary, commission_pct 
FROM     employees 
WHERE    commission_pct IS NOT NULL 
ORDER BY 2 DESC, 3 DESC; 

10) Members of the HR department want to have more flexibility with the queries that 
you are writing. They would like a report that displays the last name and salary of 
employees who earn more than an amount that the user specifies after a prompt. (You 
can use the query created in practice exercise 1 and modify it.) Save this query to a 
file named lab_02_10.sql.  

SELECT  last_name, salary 
FROM    employees  
WHERE   salary > &sal_amt; 

Enter 12000 when prompted for a value in a dialog box. Click OK. 

 

11) The HR department wants to run reports based on a manager. Create a query that 
prompts the user for a manager ID and generates the employee ID, last name, salary, 
and department for that manager’s employees. The HR department wants the ability 
to sort the report on a selected column. You can test the data with the following 
values: 

manager _id = 103, sorted by last_name 
manager_id = 201, sorted by salary 
manager_id = 124, sorted by employee_id 



Practice Solutions 2-1: Restricting and Sorting Data (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 26 

SELECT employee_id, last_name, salary, department_id 
FROM employees 
WHERE manager_id = &mgr_num 
ORDER BY &order_col; 

If you have the time, complete the following exercises: 
12) Display all employee last names in which the third letter of the name is “a.” 

SELECT   last_name 
FROM     employees  
WHERE    last_name LIKE '__a%'; 

13) Display the last names of all employees who have both an “a” and an “e” in their last 
name. 

SELECT   last_name 
FROM     employees 
WHERE    last_name LIKE '%a%' 
AND      last_name LIKE '%e%'; 

If you want an extra challenge, complete the following exercises: 

14) Display the last name, job, and salary for all employees whose job is that of a sales 
representative or a stock clerk, and whose salary is not equal to $2,500, $3,500, or 
$7,000. 

SELECT   last_name, job_id, salary 
FROM     employees 
WHERE    job_id IN ('SA_REP', 'ST_CLERK')  
AND      salary NOT IN (2500, 3500, 7000); 

15) Modify lab_02_06.sql to display the last name, salary, and commission for all 
employees whose commission amount is 20%. Save lab_02_06.sql as 
lab_02_15.sql again. Rerun the statement in lab_02_15.sql. 

SELECT   last_name "Employee", salary "Monthly Salary",  
         commission_pct 
FROM     employees 
WHERE    commission_pct = .20; 



 

Oracle Database 11g: SQL Fundamentals I   A - 27 

Practices for Lesson 3 
This practice provides a variety of exercises using different functions that are available 
for character, number, and date data types. 



 

Oracle Database 11g: SQL Fundamentals I   A - 28 

Practice 3-1: Using Single-Row Functions to Customize Output 
1) Write a query to display the system date. Label the column Date. 

Note: If your database is remotely located in a different time zone, the output will be 
the date for the operating system on which the database resides. 

    

2) The HR department needs a report to display the employee number, last name, salary, 
and salary increased by 15.5% (expressed as a whole number) for each employee. 
Label the column New Salary. Save your SQL statement in a file named 
lab_03_02.sql. 

3) Run your query in the lab_03_02.sql file.         

 

… 

 

4) Modify your query lab_03_02.sql to add a column that subtracts the old salary 
from the new salary. Label the column Increase. Save the contents of the file as 
lab_03_04.sql. Run the revised query. 

 

… 

 



Practice 3-1: Using Single-Row Functions to Customize Output 
(continued) 

Oracle Database 11g: SQL Fundamentals I   A - 29 

5) Write a query that displays the last name (with the first letter in uppercase and all the 
other letters in lowercase) and the length of the last name for all employees whose 
name starts with the letters “J,” “A,” or “M.” Give each column an appropriate label. 
Sort the results by the employees’ last names. 

 
 
Rewrite the query so that the user is prompted to enter a letter that the last name starts 
with. For example, if the user enters “H” (capitalized) when prompted for a letter, 
then the output should show all employees whose last name starts with the letter “H.” 

 

Modify the query such that the case of the entered letter does not affect the output. 
The entered letter must be capitalized before being processed by the SELECT query. 

 

 

 

6) The HR department wants to find the duration of employment for each employee. For 
each employee, display the last name and calculate the number of months between 
today and the date on which the employee was hired. Label the column as 
MONTHS_WORKED. Order your results by the number of months employed. Round the 
number of months up to the closest whole number. 

Note: Because this query depends on the date when it was executed, the values in the 
MONTHS_WORKED column will differ for you. 
 



Practice 3-1: Using Single-Row Functions to Customize Output 
(continued) 

Oracle Database 11g: SQL Fundamentals I   A - 30 

 
… 

 
 
 

If you have time, complete the following exercises: 

7) Create a query to display the last name and salary for all employees. Format the 
salary to be 15 characters long, left-padded with the $ symbol. Label the column 
SALARY. 

 
… 

 

8) Create a query that displays the first eight characters of the employees’ last names 
and indicates the amounts of their salaries with asterisks. Each asterisk signifies a 
thousand dollars. Sort the data in descending order of salary. Label the column 
EMPLOYEES_AND_THEIR_SALARIES. 

 
… 

 



Practice 3-1: Using Single-Row Functions to Customize Output 
(continued) 

Oracle Database 11g: SQL Fundamentals I   A - 31 

9) Create a query to display the last name and the number of weeks employed for all 
employees in department 90. Label the number of weeks column TENURE. Truncate 
the number of weeks value to 0 decimal places. Show the records in descending order 
of the employee’s tenure. 

Note: The TENURE value will differ as it depends on the date on which you run the 
query. 
 



 

Oracle Database 11g: SQL Fundamentals I   A - 32 

Practice Solutions 3-1: Using Single-Row Functions to 
Customize Output 
1) Write a query to display the system date. Label the column Date. 

Note: If your database is remotely located in a different time zone, the output will be 
the date for the operating system on which the database resides.  

SELECT  sysdate "Date" 
FROM    dual; 

2) The HR department needs a report to display the employee number, last name, salary, 
and salary increased by 15.5% (expressed as a whole number) for each employee. 
Label the column New Salary. Save your SQL statement in a file named 
lab_03_02.sql. 

SELECT  employee_id, last_name, salary, 
        ROUND(salary * 1.155, 0) "New Salary" 
FROM    employees; 

3) Run your query in the file lab_03_02.sql. 

SELECT  employee_id, last_name, salary, 
        ROUND(salary * 1.155, 0) "New Salary" 
FROM    employees; 

4) Modify your query lab_03_02.sql to add a column that subtracts the old salary 
from the new salary. Label the column Increase. Save the contents of the file as 
lab_03_04.sql. Run the revised query. 

SELECT  employee_id, last_name, salary,  
        ROUND(salary * 1.155, 0) "New Salary", 
        ROUND(salary * 1.155, 0) - salary "Increase"  
FROM    employees; 

5) Write a query that displays the last name (with the first letter in uppercase and all the 
other letters in lowercase) and the length of the last name for all employees whose 
name starts with the letters “J,” “A,” or “M.” Give each column an appropriate label. 
Sort the results by the employees’ last names. 

SELECT  INITCAP(last_name) "Name", 
        LENGTH(last_name) "Length" 
FROM    employees 
WHERE   last_name LIKE 'J%' 
OR      last_name LIKE 'M%' 
OR      last_name LIKE 'A%' 
ORDER BY last_name ; 

 

Rewrite the query so that the user is prompted to enter a letter that starts the last 
name. For example, if the user enters H (capitalized) when prompted for a letter, then 
the output should show all employees whose last name starts with the letter “H.” 



Practice Solutions 3-1: Using Single-Row Functions to 
Customize Output (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 33 

SELECT  INITCAP(last_name) "Name", 
        LENGTH(last_name) "Length" 
FROM    employees 
WHERE   last_name LIKE '&start_letter%'  
ORDER BY last_name; 

Modify the query such that the case of the entered letter does not affect the output. The 
entered   letter must be capitalized before being processed by the SELECT query. 

SELECT  INITCAP(last_name) "Name", 
LENGTH(last_name) "Length" 
FROM    employees 
WHERE   last_name LIKE UPPER('&start_letter%' ) 
ORDER BY last_name; 

6) The HR department wants to find the duration of employment for each employee. For 
each employee, display the last name and calculate the number of months between 
today and the date on which the employee was hired. Label the column 
MONTHS_WORKED. Order your results by the number of months employed. Round 
the number of months up to the closest whole number. 

 Note: Because this query depends on the date when it was executed, the values in the 
MONTHS_WORKED column will differ for you. 

SELECT last_name, ROUND(MONTHS_BETWEEN( 
       SYSDATE, hire_date)) MONTHS_WORKED 
FROM   employees  
ORDER BY months_worked; 

If you have the time, complete the following exercises: 
7) Create a query to display the last name and salary for all employees. Format the 

salary to be 15 characters long, left-padded with the $ symbol. Label the column 
SALARY. 

SELECT last_name, 
       LPAD(salary, 15, '$') SALARY 
FROM   employees; 

8) Create a query that displays the first eight characters of the employees’ last names 
and indicates the amounts of their salaries with asterisks. Each asterisk signifies a 
thousand dollars. Sort the data in descending order of salary. Label the column 
EMPLOYEES_AND_THEIR_SALARIES. 

SELECT rpad(last_name, 8)||' '||  
       rpad(' ', salary/1000+1, '*') 
               EMPLOYEES_AND_THEIR_SALARIES 
FROM  employees 
ORDER BY salary DESC; 

 
 



Practice Solutions 3-1: Using Single-Row Functions to 
Customize Output (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 34 

9) Create a query to display the last name and the number of weeks employed for all 
employees in department 90. Label the number of weeks column TENURE. Truncate 
the number of weeks value to 0 decimal places. Show the records in descending order 
of the employee’s tenure. 
Note: The TENURE value will differ as it depends on the date when you run the 
query. 

 
SELECT last_name, trunc((SYSDATE-hire_date)/7) AS TENURE 
FROM   employees 
WHERE  department_id = 90 
ORDER BY TENURE DESC 

 
 



 

Oracle Database 11g: SQL Fundamentals I   A - 35 

Practices for Lesson 4 
This practice provides a variety of exercises using TO_CHAR and TO_DATE functions, and 
conditional expressions such as DECODE and CASE. Remember that for nested functions, 
the results are evaluated from the innermost function to the outermost function. 
 



 

Oracle Database 11g: SQL Fundamentals I   A - 36 

Practice 4-1: Using Conversion Functions and Conditional 
Expressions 
1) Create a report that produces the following for each employee: 

<employee last name> earns <salary> monthly but wants <3 times 
salary.>. Label the column Dream Salaries. 

 

… 

 

2) Display each employee’s last name, hire date, and salary review date, which is the 
first Monday after six months of service. Label the column REVIEW. Format the dates 
to appear in the format similar to “Monday, the Thirty-First of July, 2000.” 

 

… 

 

3) Display the last name, hire date, and day of the week on which the employee started. 
Label the column DAY. Order the results by the day of the week, starting with 
Monday. 

 

… 

 



Practice 4-1: Using Conversion Functions and Conditional 
Expressions (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 37 

4) Create a query that displays the employees’ last names and commission amounts. If 
an employee does not earn commission, show “No Commission.” Label the column 
COMM. 

 

… 

 

If you have time, complete the following exercises: 

5) Using the DECODE function, write a query that displays the grade of all employees 
based on the value of the column JOB_ID, using the following data: 

Job    Grade  
AD_PRES   A  
ST_MAN   B  
IT_PROG   C  
SA_REP   D  
ST_CLERK   E  
None of the above 0 

 
… 

 
… 

 
 



Practice 4-1: Using Conversion Functions and Conditional 
Expressions (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 38 

6) Rewrite the statement in the preceding exercise by using the CASE syntax. 

 
… 

 
… 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 39 

Practice Solutions 4-1: Using Conversion Functions and 
Conditional Expressions 
1) Create a report that produces the following for each employee: 

<employee last name> earns <salary> monthly but wants <3 times salary.>. Label the 
column Dream Salaries. 

SELECT  last_name || ' earns ' 
        || TO_CHAR(salary, 'fm$99,999.00') 
        || ' monthly but wants ' 
        || TO_CHAR(salary * 3, 'fm$99,999.00') 
        || '.' "Dream Salaries" 
FROM    employees; 

2) Display each employee’s last name, hire date, and salary review date, which is the 
first Monday after six months of service. Label the column REVIEW. Format the 
dates to appear in the format similar to “Monday, the Thirty-First of July, 2000.” 

SELECT last_name, hire_date, 
       TO_CHAR(NEXT_DAY(ADD_MONTHS(hire_date, 6),'MONDAY'), 
       'fmDay, "the" Ddspth "of" Month, YYYY') REVIEW 
FROM    employees;  

3) Display the last name, hire date, and day of the week on which the employee started. 
Label the column DAY. Order the results by the day of the week, starting with 
Monday. 

SELECT last_name, hire_date, 
       TO_CHAR(hire_date, 'DAY') DAY 
FROM     employees 
ORDER BY TO_CHAR(hire_date - 1, 'd'); 

4) Create a query that displays the employees’ last names and commission amounts. If 
an employee does not earn commission, show “No Commission.” Label the column 
COMM. 

SELECT last_name, 
       NVL(TO_CHAR(commission_pct), 'No Commission') COMM 
FROM   employees;        
 

5) Using the DECODE function, write a query that displays the grade of all employees 
based on the value of the JOB_ID column, using the following data: 

 Job    Grade   

   AD_PRES    A   
   ST_MAN    B   
   IT_PROG    C   
   SA_REP    D   
   ST_CLERK   E   
   None of the above  0  
 



Practice Solutions 4-1: Using Conversion Functions and 
Conditional Expressions (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 40 

SELECT job_id, decode (job_id, 
                       'ST_CLERK',  'E', 
                       'SA_REP',    'D', 
                       'IT_PROG',   'C', 
                       'ST_MAN',    'B', 
                       'AD_PRES',   'A', 
                       '0')GRADE 
FROM employees; 

6) Rewrite the statement in the preceding exercise by using the CASE syntax. 

SELECT job_id, CASE job_id 
               WHEN 'ST_CLERK' THEN 'E' 
               WHEN 'SA_REP'   THEN 'D' 
               WHEN 'IT_PROG'  THEN 'C' 
               WHEN 'ST_MAN'   THEN 'B' 
               WHEN 'AD_PRES'  THEN 'A' 
               ELSE '0'  END  GRADE 
FROM employees; 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 41 

Practices for Lesson 5 
At the end of this practice, you should be familiar with using group functions and 
selecting groups of data. 
 



 

Oracle Database 11g: SQL Fundamentals I   A - 42 

Practice 5-1: Reporting Aggregated Data Using the Group 
Functions 
Determine the validity of the following three statements. Circle either True or False. 

1) Group functions work across many rows to produce one result per group. 
True/False 

2) Group functions include nulls in calculations. 
True/False 

3) The WHERE clause restricts rows before inclusion in a group calculation. 
True/False 

 

The HR department needs the following reports: 

4) Find the highest, lowest, sum, and average salary of all employees. Label the columns 
Maximum, Minimum, Sum, and Average, respectively. Round your results to the 
nearest whole number. Save your SQL statement as lab_05_04.sql. Run the query. 

 

5) Modify the query in lab_05_04.sql to display the minimum, maximum, sum, and 
average salary for each job type. Save lab_05_04.sql as lab_05_05.sql again. 
Run the statement in lab_05_05.sql. 

 

 

 

 

 

 

 



Practice 5-1: Reporting Aggregated Data Using the Group 
Functions (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 43 

6) Write a query to display the number of people with the same job. 

 

Generalize the query so that the user in the HR department is prompted for a job title. 
Save the script to a file named lab_05_06.sql. Run the query. Enter IT_PROG 
when prompted. 

 

7) Determine the number of managers without listing them. Label the column Number 
of Managers.  
Hint: Use the MANAGER_ID column to determine the number of managers. 

 

8) Find the difference between the highest and lowest salaries. Label the column 
DIFFERENCE. 

 

If you have time, complete the following exercises: 

9) Create a report to display the manager number and the salary of the lowest-paid 
employee for that manager. Exclude anyone whose manager is not known. Exclude 
any groups where the minimum salary is $6,000 or less. Sort the output in descending 
order of salary. 

 

 



Practice 5-1: Reporting Aggregated Data Using the Group 
Functions (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 44 

If you want an extra challenge, complete the following exercises: 

10) Create a query to display the total number of employees and, of that total, the number 
of employees hired in 1995, 1996, 1997, and 1998. Create appropriate column 
headings. 

 

11) Create a matrix query to display the job, the salary for that job based on department 
number, and the total salary for that job, for departments 20, 50, 80, and 90, giving 
each column an appropriate heading. 



 

Oracle Database 11g: SQL Fundamentals I   A - 45 

Practice Solutions 5-1: Reporting Aggregated Data Using the 
Group Functions 

Determine the validity of the following three statements. Circle either True or False. 
1) Group functions work across many rows to produce one result per group. 

True/False 

2) Group functions include nulls in calculations. 
True/False 

3) The WHERE clause restricts rows before inclusion in a group calculation. 
True/False 

The HR department needs the following reports: 

4) Find the highest, lowest, sum, and average salary of all employees. Label the columns 
Maximum, Minimum, Sum, and Average, respectively. Round your results to the 
nearest whole number. Save your SQL statement as lab_05_04.sql. Run the 
query. 

SELECT ROUND(MAX(salary),0) "Maximum", 
       ROUND(MIN(salary),0) "Minimum", 
       ROUND(SUM(salary),0) "Sum", 
       ROUND(AVG(salary),0) "Average" 
FROM   employees;    

5) Modify the query in lab_05_04.sql to display the minimum, maximum, sum, 
and average salary for each job type. Save lab_05_04.sql as lab_05_05.sql 
again. Run the statement in lab_05_05.sql. 

SELECT job_id, ROUND(MAX(salary),0) "Maximum", 
               ROUND(MIN(salary),0) "Minimum", 
               ROUND(SUM(salary),0) "Sum", 
               ROUND(AVG(salary),0) "Average" 
FROM   employees        
GROUP BY job_id; 

6) Write a query to display the number of people with the same job. 

SELECT job_id, COUNT(*) 
FROM   employees  
GROUP BY job_id; 

Generalize the query so that the user in the HR department is prompted for a job title. 
Save the script to a file named lab_05_06.sql. Run the query. Enter IT_PROG 
when prompted and click OK. 

SELECT job_id, COUNT(*) 
FROM   employees 
WHERE  job_id = '&job_title' 
GROUP BY job_id; 



Practice Solutions 5-1: Reporting Aggregated Data Using the 
Group Functions (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 46 

7) Determine the number of managers without listing them. Label the column Number 
of Managers.  
Hint: Use the MANAGER_ID column to determine the number of managers. 

SELECT COUNT(DISTINCT manager_id) "Number of Managers" 
FROM   employees;  

8) Find the difference between the highest and lowest salaries. Label the column 
DIFFERENCE. 

SELECT   MAX(salary) - MIN(salary) DIFFERENCE 
FROM     employees; 

If you have the time, complete the following exercises: 
9) Create a report to display the manager number and the salary of the lowest-paid 

employee for that manager. Exclude anyone whose manager is not known. Exclude 
any groups where the minimum salary is $6,000 or less. Sort the output in descending 
order of salary. 

SELECT   manager_id, MIN(salary) 
FROM     employees 
WHERE    manager_id IS NOT NULL 
GROUP BY manager_id 
HAVING   MIN(salary) > 6000  
ORDER BY MIN(salary) DESC; 

If you want an extra challenge, complete the following exercises: 
10) Create a query that will display the total number of employees and, of that total, the 

number of employees hired in 1995, 1996, 1997, and 1998. Create appropriate 
column headings. 

SELECT  COUNT(*) total, 
        SUM(DECODE(TO_CHAR(hire_date, 
'YYYY'),1995,1,0))"1995", 
        SUM(DECODE(TO_CHAR(hire_date, 
'YYYY'),1996,1,0))"1996", 
        SUM(DECODE(TO_CHAR(hire_date, 
'YYYY'),1997,1,0))"1997", 
        SUM(DECODE(TO_CHAR(hire_date, 'YYYY'),1998,1,0))"1998" 
FROM    employees; 

 

 

 

 



Practice Solutions 5-1: Reporting Aggregated Data Using the 
Group Functions (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 47 

11) Create a matrix query to display the job, the salary for that job based on the 
department number, and the total salary for that job, for departments 20, 50, 80, and 
90, giving each column an appropriate heading. 

SELECT   job_id "Job", 
         SUM(DECODE(department_id , 20, salary)) "Dept 20", 
         SUM(DECODE(department_id , 50, salary)) "Dept 50", 
         SUM(DECODE(department_id , 80, salary)) "Dept 80", 
         SUM(DECODE(department_id , 90, salary)) "Dept 90",  
         SUM(salary) "Total" 
FROM     employees 
GROUP BY job_id; 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 48 

Practices for Lesson 6 
This practice is intended to give you experience in extracting data from more than one 
table using the SQL:1999–compliant joins. 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 49 

Practice 6-1: Displaying Data from Multiple Tables Using Joins 
1) Write a query for the HR department to produce the addresses of all the departments. 

Use the LOCATIONS and COUNTRIES tables. Show the location ID, street address, 
city, state or province, and country in the output. Use a NATURAL JOIN to produce 
the results. 

 

2) The HR department needs a report of only those employees with corresponding 
departments. Write a query to display the last name, department number, and 
department name for these employees. 

 

… 

 

3) The HR department needs a report of employees in Toronto. Display the last name, 
job, department number, and the department name for all employees who work in 
Toronto. 

 

4) Create a report to display employees’ last name and employee number along with 
their manager’s last name and manager number. Label the columns Employee, Emp#, 
Manager, and Mgr#, respectively. Save your SQL statement as lab_06_04.sql. 
Run the query. 

 

… 



Practice 6-1: Displaying Data from Multiple Tables Using Joins 
(continued) 

Oracle Database 11g: SQL Fundamentals I   A - 50 

 

5) Modify lab_06_04.sql to display all employees including King, who has no 
manager. Order the results by the employee number. Save your SQL statement as 
lab_06_05.sql. Run the query in lab_06_05.sql. 

 

… 

   

6) Create a report for the HR department that displays employee last names, department 
numbers, and all the employees who work in the same department as a given 
employee. Give each column an appropriate label. Save the script to a file named 
lab_06_06.sql. 

 

… 

 

7) The HR department needs a report on job grades and salaries. To familiarize yourself 
with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then 
create a query that displays the name, job, department name, salary, and grade for all 
employees. 

 



Practice 6-1: Displaying Data from Multiple Tables Using Joins 
(continued) 

Oracle Database 11g: SQL Fundamentals I   A - 51 

 

… 

 

If you want an extra challenge, complete the following exercises: 

8) The HR department wants to determine the names of all the employees who were 
hired after Davies. Create a query to display the name and hire date of any employee 
hired after employee Davies. 

 

9) The HR department needs to find the names and hire dates of all the employees who 
were hired before their managers, along with their managers’ names and hire dates. 
Save the script to a file named lab_06_09.sql. 

 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 52 

Practice Solutions 6-1: Displaying Data from Multiple Tables 
Using Joins 
1) Write a query for the HR department to produce the addresses of all the departments. 

Use the LOCATIONS and COUNTRIES tables. Show the location ID, street address, 
city, state or province, and country in the output. Use a NATURAL JOIN to produce 
the results. 

SELECT location_id, street_address, city, state_province, 
country_name 
FROM   locations  
NATURAL JOIN  countries; 

2) The HR department needs a report of all employees. Write a query to display the last 
name, department number, and department name for all the employees. 

SELECT last_name, department_id, department_name 
FROM   employees  
JOIN   departments  
USING (department_id); 

3) The HR department needs a report of employees in Toronto. Display the last name, 
job, department number, and department name for all employees who work in 
Toronto. 

SELECT e.last_name, e.job_id, e.department_id, 
d.department_name 
FROM   employees e JOIN departments d  
ON     (e.department_id = d.department_id) 
JOIN   locations l 
ON     (d.location_id = l.location_id) 
WHERE LOWER(l.city) = 'toronto'; 

4) Create a report to display employees’ last names and employee number along with 
their managers’ last names and manager number. Label the columns Employee, 
Emp#, Manager, and Mgr#, respectively. Save your SQL statement as 
lab_06_04.sql. Run the query. 

SELECT w.last_name "Employee", w.employee_id "EMP#",  
       m.last_name "Manager", m.employee_id  "Mgr#" 
FROM   employees w join employees m 
ON     (w.manager_id = m.employee_id); 

5) Modify lab_06_04.sql to display all employees including King, who has no 
manager. Order the results by the employee number. Save your SQL statement as 
lab_06_05.sql. Run the query in lab_06_05.sql. 

SELECT w.last_name "Employee", w.employee_id "EMP#",  
       m.last_name "Manager", m.employee_id  "Mgr#" 
FROM   employees w  
LEFT   OUTER JOIN employees m 
ON     (w.manager_id = m.employee_id) 
ORDER BY 2; 



Practice Solutions 6-1: Displaying Data from Multiple Tables 
Using Joins (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 53 

6) Create a report for the HR department that displays employee last names, department 
numbers, and all the employees who work in the same department as a given 
employee. Give each column an appropriate label. Save the script to a file named 
lab_06_06.sql. Run the query. 

SELECT e.department_id department, e.last_name employee, 
       c.last_name colleague 
FROM   employees e JOIN employees c 
ON     (e.department_id = c.department_id) 
WHERE  e.employee_id <> c.employee_id  
ORDER BY e.department_id, e.last_name, c.last_name; 

7) The HR department needs a report on job grades and salaries. To familiarize yourself 
with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then 
create a query that displays the name, job, department name, salary, and grade for all 
employees.  

DESC JOB_GRADES 
 
SELECT e.last_name, e.job_id, d.department_name, 
       e.salary, j.grade_level 
FROM   employees e JOIN departments d 
ON     (e.department_id = d.department_id) 
JOIN   job_grades j 
ON    (e.salary BETWEEN j.lowest_sal AND j.highest_sal); 

If you want an extra challenge, complete the following exercises: 

8) The HR department wants to determine the names of all employees who were hired 
after Davies. Create a query to display the name and hire date of any employee hired 
after employee Davies. 

SELECT e.last_name, e.hire_date 
FROM   employees e JOIN employees davies 
ON     (davies.last_name = 'Davies') 
WHERE  davies.hire_date < e.hire_date; 

9) The HR department needs to find the names and hire dates for all employees who 
were hired before their managers, along with their managers’ names and hire dates. 
Save the script to a file named lab_06_09.sql. 

SELECT w.last_name, w.hire_date, m.last_name, m.hire_date 
FROM   employees w JOIN employees m 
ON    (w.manager_id = m.employee_id)  
WHERE    w.hire_date <  m.hire_date; 

 
 
 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 54 

Practices for Lesson 7 
In this practice, you write complex queries using nested SELECT statements. 
For practice questions, you may want to create the inner query first. Make sure that it 
runs and produces the data that you anticipate before you code the outer query. 

  



 

Oracle Database 11g: SQL Fundamentals I   A - 55 

Practice 7-1: Using Subqueries to Solve Queries 
1) The HR department needs a query that prompts the user for an employee last name. 

The query then displays the last name and hire date of any employee in the same 
department as the employee whose name they supply (excluding that employee). For 
example, if the user enters Zlotkey, find all employees who work with Zlotkey 
(excluding Zlotkey). 

 

 

2) Create a report that displays the employee number, last name, and salary of all 
employees who earn more than the average salary. Sort the results in order of 
ascending salary. 

 

3) Write a query that displays the employee number and last name of all employees who 
work in a department with any employee whose last name contains the letter “u.” 
Save your SQL statement as lab_07_03.sql. Run your query. 

 



Practice 7-1: Using Subqueries to Solve Queries (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 56 

4) The HR department needs a report that displays the last name, department number, 
and job ID of all employees whose department location ID is 1700. 

 

Modify the query so that the user is prompted for a location ID. Save this to a file 
named lab_07_04.sql. 

5) Create a report for HR that displays the last name and salary of every employee who 
reports to King. 

 

6) Create a report for HR that displays the department number, last name, and job ID for 
every employee in the Executive department. 

 

7) Create a report that displays a list of all employees whose salary is more than the 
salary of any employee from department 60. 

If you have the time, complete the following exercise: 

8) Modify the query in lab_07_03.sql to display the employee number, last name, 
and salary of all employees who earn more than the average salary, and who work in 
a department with any employee whose last name contains a “u.” Save 
lab_07_03.sql as lab_07_08.sql again. Run the statement in lab_07_08.sql. 

 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 57 

Practice Solutions 7-1: Using Subqueries to Solve Queries 
1) The HR department needs a query that prompts the user for an employee last name. 

The query then displays the last name and hire date of any employee in the same 
department as the employee whose name they supply (excluding that employee). For 
example, if the user enters Zlotkey, find all employees who work with Zlotkey 
(excluding Zlotkey). 

UNDEFINE Enter_name 
 
SELECT last_name, hire_date 
FROM   employees 
WHERE  department_id = (SELECT department_id 
                        FROM   employees 
                        WHERE  last_name = '&&Enter_name') 
AND    last_name <> '&Enter_name'; 

2) Create a report that displays the employee number, last name, and salary of all 
employees who earn more than the average salary. Sort the results in order of 
ascending salary. 

SELECT employee_id, last_name, salary 
FROM   employees 
WHERE  salary > (SELECT AVG(salary) 
                 FROM   employees) 
ORDER BY salary; 

3) Write a query that displays the employee number and last name of all employees who 
work in a department with any employee whose last name contains a “u.” Save your 
SQL statement as lab_07_03.sql. Run your query. 

SELECT employee_id, last_name 
FROM   employees 
WHERE  department_id IN (SELECT department_id 
                         FROM   employees 
                         WHERE  last_name like '%u%'); 

4) The HR department needs a report that displays the last name, department number, 
and job ID of all employees whose department location ID is 1700. 

SELECT last_name, department_id, job_id 
FROM   employees 
WHERE  department_id IN (SELECT department_id 
                         FROM   departments 
                         WHERE  location_id = 1700); 

 

 

 

 



Practice Solutions 7-1: Using Subqueries to Solve Queries 
(continued) 

Oracle Database 11g: SQL Fundamentals I   A - 58 

Modify the query so that the user is prompted for a location ID. Save this to a file 
named lab_07_04.sql. 

SELECT last_name, department_id, job_id 
FROM   employees 
WHERE  department_id IN (SELECT department_id 
                         FROM   departments 
                         WHERE  location_id = 
&Enter_location); 

5) Create a report for HR that displays the last name and salary of every employee who 
reports to King. 

SELECT last_name, salary 
FROM   employees 
WHERE  manager_id = (SELECT employee_id 
                     FROM   employees 
                     WHERE  last_name = 'King'); 

6) Create a report for HR that displays the department number, last name, and job ID for 
every employee in the Executive department. 

SELECT department_id, last_name, job_id 
FROM   employees 
WHERE  department_id IN (SELECT department_id 
                         FROM   departments 
                         WHERE  department_name =     
'Executive'); 

7) Create a report that displays a list of all employees whose salary is more than the 
salary of any employee from department 60. 

SELECT last_name FROM employees 
WHERE salary > ANY (SELECT salary 
     FROM employees 
     WHERE department_id=60); 

If you have the time, complete the following exercise: 

8) Modify the query in lab_07_03.sql to display the employee number, last name, 
and salary of all employees who earn more than the average salary and who work in a 
department with any employee whose last name contains a “u.” Save 
lab_07_03.sql to lab_07_08.sql again. Run the statement in lab_07_08.sql. 

SELECT employee_id, last_name, salary 
FROM   employees 
WHERE  department_id IN (SELECT department_id 
                         FROM   employees 
                         WHERE  last_name like '%u%') 
AND    salary > (SELECT AVG(salary)  
                 FROM   employees); 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 59 

Practices for Lesson 8 
In this practice, you write queries using the set operators. 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 60 

Practice 8-1: Using the Set Operators 
1) The HR department needs a list of department IDs for departments that do not contain 

the job ID ST_CLERK. Use the set operators to create this report. 

 

2) The HR department needs a list of countries that have no departments located in 
them. Display the country ID and the name of the countries. Use the set operators to 
create this report. 

 

3) Produce a list of jobs for departments 10, 50, and 20, in that order. Display the job ID 
and department ID by using the set operators. 

 

4) Create a report that lists the employee IDs and job IDs of those employees who 
currently have a job title that is the same as their job title when they were initially 
hired by the company (that is, they changed jobs, but have now gone back to doing 
their original job). 

 

5) The HR department needs a report with the following specifications:  

• Last name and department ID of all employees from the EMPLOYEES table, 
regardless of whether or not they belong to a department 

• Department ID and department name of all departments from the DEPARTMENTS 
table, regardless of whether or not they have employees working in them 

Write a compound query to accomplish this. 



Practice 8-1: Using the Set Operators (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 61 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 62 

Practice Solutions 8-1: Using the Set Operators 
1) The HR department needs a list of department IDs for departments that do not contain 

the job ID ST_CLERK. Use the set operators to create this report. 

SELECT department_id 
FROM   departments 
MINUS 
SELECT department_id 
FROM   employees 
WHERE  job_id = 'ST_CLERK'; 

2) The HR department needs a list of countries that have no departments located in 
them. Display the country ID and the name of the countries. Use the set operators to 
create this report. 

SELECT country_id,country_name 
FROM countries 
MINUS 
SELECT l.country_id,c.country_name 
FROM locations l JOIN countries c 
ON (l.country_id = c.country_id) 
JOIN departments d 
ON d.location_id=l.location_id; 

3) Produce a list of jobs for departments 10, 50, and 20, in that order. Display job ID and 
department ID using the set operators. 

SELECT distinct job_id, department_id  
FROM employees 
WHERE department_id = 10 
UNION ALL 
SELECT DISTINCT job_id, department_id  
FROM employees 
WHERE department_id = 50 
UNION ALL 
SELECT DISTINCT job_id, department_id  
FROM employees 
WHERE department_id = 20 

4) Create a report that lists the employee IDs and job IDs of those employees who 
currently have a job title that is the same as their job title when they were initially 
hired by the company (that is, they changed jobs, but have now gone back to doing 
their original job). 

SELECT    employee_id,job_id 
FROM      employees 
INTERSECT  
SELECT   employee_id,job_id 
FROM     job_history; 

 

 



Practice Solutions 8-1: Using the Set Operators (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 63 

5) The HR department needs a report with the following specifications: 

• Last name and department ID of all the employees from the EMPLOYEES table, 
regardless of whether or not they belong to a department 

• Department ID and department name of all the departments from the 
DEPARTMENTS table, regardless of whether or not they have employees working 
in them 

Write a compound query to accomplish this. 

SELECT last_name,department_id,TO_CHAR(null) 
FROM   employees 
UNION 
SELECT TO_CHAR(null),department_id,department_name 
FROM  departments; 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 64 

Practices for Lesson 9 
In this practice, you add rows to the MY_EMPLOYEE table, update and delete data from the 
table, and control your transactions. You run a script to create the MY_EMPLOYEE table. 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 65 

Practice 9-1: Manipulating Data 
The HR department wants you to create SQL statements to insert, update, and delete 
employee data. As a prototype, you use the MY_EMPLOYEE table before giving the 
statements to the HR department. 

Note: For all the DML statements, use the Run Script icon (or press [F5]) to execute the 
query. This way you get to see the feedback messages on the Script Output tabbed page. 
For SELECT queries, continue to use the Execute Statement icon or press [F9] to get the 
formatted output on the Results tabbed page. 

Insert data into the MY_EMPLOYEE table. 

1) Run the statement in the lab_09_01.sql script to build the MY_EMPLOYEE table 
used in this practice. 

2) Describe the structure of the MY_EMPLOYEE table to identify the column names. 

 

3) Create an INSERT statement to add the first row of data to the MY_EMPLOYEE table 
from the following sample data. Do not list the columns in the INSERT clause. Do not 
enter all rows yet. 

4) Populate the MY_EMPLOYEE table with the second row of the sample data from the 
preceding list. This time, list the columns explicitly in the INSERT clause. 

5) Confirm your addition to the table. 

1550aropeburAudreyRopeburn5

750cnewmanChadNewman4

1100bbiriBenBiri3

860bdancsBettyDancs2

895rpatelRalphPatel1

SALARYUSERIDFIRST_NAMELAST_NAMEID

1550aropeburAudreyRopeburn5

750cnewmanChadNewman4

1100bbiriBenBiri3

860bdancsBettyDancs2

895rpatelRalphPatel1

SALARYUSERIDFIRST_NAMELAST_NAMEID



Practice 9-1: Manipulating Data (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 66 

 

6) Write an INSERT statement in a dynamic reusable script file to load the remaining 
rows into the MY_EMPLOYEE table. The script should prompt for all the columns (ID, 
LAST_NAME, FIRST_NAME, USERID, and SALARY). Save this script to a 
lab_09_06.sql file. 

7) Populate the table with the next two rows of the sample data listed in step 3 by 
running the INSERT statement in the script that you created. 

8) Confirm your additions to the table. 

 

9) Make the data additions permanent. 

 

Update and delete data in the MY_EMPLOYEE table. 

10) Change the last name of employee 3 to Drexler. 

11) Change the salary to $1,000 for all employees who have a salary less than $900. 

12) Verify your changes to the table. 

 

 

13) Delete Betty Dancs from the MY_EMPLOYEE table. 

14) Confirm your changes to the table. 

 

 

 

 



Practice 9-1: Manipulating Data (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 67 

15) Commit all pending changes. 

 

Control data transaction to the MY_EMPLOYEE table. 

16) Populate the table with the last row of the sample data listed in step 3 by using the 
statements in the script that you created in step 6. Run the statements in the script. 

17) Confirm your addition to the table. 

 

18) Mark an intermediate point in the processing of the transaction. 

19) Delete all the rows from the MY_EMPLOYEE table. 

20) Confirm that the table is empty. 

21) Discard the most recent DELETE operation without discarding the earlier INSERT 
operation. 

22) Confirm that the new row is still intact. 

 

23) Make the data addition permanent. 

If you have the time, complete the following exercise: 

24) Modify the lab_09_06.sql script such that the USERID is generated automatically 
by concatenating the first letter of the first name and the first seven characters of the 
last name. The generated USERID must be in lowercase. Therefore, the script should 
not prompt for the USERID. Save this script to a file named lab_09_24.sql. 

 

 

25) Run the lab_09_24.sql script to insert the following record: 

 

26) Confirm that the new row was added with correct USERID. 

1230manthonyMarkAnthony6

SALARYUSERIDFIRST_NAMELAST_NAMEID

1230manthonyMarkAnthony6

SALARYUSERIDFIRST_NAMELAST_NAMEID



Practice 9-1: Manipulating Data (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 68 

 

 

 
 



 

Oracle Database 11g: SQL Fundamentals I   A - 69 

Practice Solutions 9-1: Manipulating Data 
Insert data into the MY_EMPLOYEE table. 

1) Run the statement in the lab_09_01.sql script to build the MY_EMPLOYEE table 
used in this practice. 

a) From File menu, select Open. In the Open dialog box, navigate to the 
/home/oracle/labs/sql1/labs folder, and then double-click 
lab_09_01.sql.  

b) After the statement is opened in a SQL Worksheet, click the Run Script icon to 
run the script. You get a Create Table succeeded message on the Script Output 
tabbed page. 

2) Describe the structure of the MY_EMPLOYEE table to identify the column names. 

DESCRIBE my_employee 

3) Create an INSERT statement to add the first row of data to the MY_EMPLOYEE table 
from the following sample data. Do not list the columns in the INSERT clause.  

 

INSERT INTO my_employee 
  VALUES (1, 'Patel', 'Ralph', 'rpatel', 895); 

4) Populate the MY_EMPLOYEE table with the second row of the sample data from the 
preceding list. This time, list the columns explicitly in the INSERT clause. 

INSERT INTO my_employee (id, last_name, first_name,                  
                         userid, salary) 
  VALUES (2, 'Dancs', 'Betty', 'bdancs', 860); 

5) Confirm your additions to the table. 

SELECT   * 
FROM     my_employee; 

1550aropeburAudreyRopeburn5

750cnewmanChadNewman4

1100bbiriBenBiri3

860bdancsBettyDancs2

895rpatelRalphPatel1

SALARYUSERIDFIRST_NAMELAST_NAMEID

1550aropeburAudreyRopeburn5

750cnewmanChadNewman4

1100bbiriBenBiri3

860bdancsBettyDancs2

895rpatelRalphPatel1

SALARYUSERIDFIRST_NAMELAST_NAMEID



Practice Solutions 9-1: Manipulating Data (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 70 

6) Write an INSERT statement in a dynamic reusable script file to load the remaining 
rows into the MY_EMPLOYEE table. The script should prompt for all the columns (ID, 
LAST_NAME, FIRST_NAME, USERID, and SALARY). Save this script to a file named 
lab_09_06.sql. 

INSERT INTO my_employee 
VALUES (&p_id, '&p_last_name', '&p_first_name', 
        '&p_userid', &p_salary); 

7) Populate the table with the next two rows of sample data listed in step 3 by running 
the INSERT statement in the script that you created. 

INSERT INTO my_employee 
VALUES (&p_id, '&p_last_name', '&p_first_name', 
       '&p_userid', &p_salary); 

8) Confirm your additions to the table. 

SELECT   * 
FROM my_employee; 

9) Make the data additions permanent. 

COMMIT; 

 

Update and delete data in the MY_EMPLOYEE table. 

10) Change the last name of employee 3 to Drexler. 

UPDATE  my_employee 
SET     last_name = 'Drexler' 
WHERE   id = 3; 

11) Change the salary to $1,000 for all employees with a salary less than $900. 

UPDATE  my_employee 
SET     salary = 1000  
WHERE   salary < 900; 

12) Verify your changes to the table. 

SELECT  *  
FROM    my_employee; 

13) Delete Betty Dancs from the MY_EMPLOYEE table. 

DELETE 
FROM  my_employee  
WHERE last_name = 'Dancs'; 

14) Confirm your changes to the table. 

SELECT  * 
FROM    my_employee; 



Practice Solutions 9-1: Manipulating Data (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 71 

15) Commit all pending changes. 

COMMIT; 

Control data transaction to the MY_EMPLOYEE table. 

16) Populate the table with the last row of the sample data listed in step 3 by using the 
statements in the script that you created in step 6. Run the statements in the script. 

INSERT INTO my_employee 
VALUES (&p_id, '&p_last_name', '&p_first_name', 
   '&p_userid', &p_salary); 

17) Confirm your addition to the table. 

SELECT  *  
FROM    my_employee;      

18) Mark an intermediate point in the processing of the transaction. 

SAVEPOINT step_17; 

19) Delete all the rows from the MY_EMPLOYEE table. 

DELETE  
FROM  my_employee; 

20) Confirm that the table is empty. 

SELECT *  
FROM   my_employee; 

21) Discard the most recent DELETE operation without discarding the earlier INSERT 
operation. 

ROLLBACK TO step_17; 

22) Confirm that the new row is still intact. 

SELECT *  
FROM   my_employee; 

23) Make the data addition permanent. 

COMMIT;  

 

 

 

 

 

 

 



Practice Solutions 9-1: Manipulating Data (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 72 

If you have time, complete the following exercise: 

24) Modify the lab_09_06.sql script such that the USERID is generated automatically 
by concatenating the first letter of the first name and the first seven characters of the 
last name. The generated USERID must be in lowercase. Therefore, the script should 
not prompt for the USERID. Save this script to a file named lab_09_24.sql. 

SET ECHO OFF 
SET VERIFY OFF 
INSERT INTO my_employee 
VALUES (&p_id, '&&p_last_name', '&&p_first_name', 
   lower(substr('&p_first_name', 1, 1) ||  
   substr('&p_last_name', 1, 7)), &p_salary); 
SET VERIFY ON 
SET ECHO ON 
UNDEFINE p_first_name 
UNDEFINE p_last_name 

25) Run the lab_09_24.sql script to insert the following record: 

26) Confirm that the new row was added with the correct USERID. 

SELECT *  
FROM my_employee  
WHERE ID='6'; 

 

1230manthonyMarkAnthony6

SALARYUSERIDFIRST_NAMELAST_NAMEID

1230manthonyMarkAnthony6

SALARYUSERIDFIRST_NAMELAST_NAMEID



 

Oracle Database 11g: SQL Fundamentals I   A - 73 

Practices for Lesson 10 
Create new tables by using the CREATE TABLE statement. Confirm that the new table 
was added to the database. You also learn to set the status of a table as READ ONLY and 
then revert to READ/WRITE. 
Note: For all the DDL and DML statements, click the Run Script icon (or press [F5]) to 
execute the query in SQL Developer. This way you get to see the feedback messages on 
the Script Output tabbed page. For SELECT queries, continue to click the Execute 
Statement icon or press [F9] to get the formatted output on the Results tabbed page. 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 74 

Practice 10-1: Using DDL Statements to Create and Manage 
Tables 
1) Create the DEPT table based on the following table instance chart. Save the statement 

in a script called lab_10_01.sql, and then execute the statement in the script to 
create the table. Confirm that the table is created. 

 

2) Populate the DEPT table with data from the DEPARTMENTS table. Include only 
columns that you need. 

3) Create the EMP table based on the following table instance chart. Save the statement 
in a script called lab_10_03.sql, and then execute the statement in the script to 
create the table. Confirm that the table is created. 

 

Column Name ID NAME 

Key Type Primary key  

Nulls/Unique   

FK Table   

FK Column   

Data type NUMBER VARCHAR2 

Length 7 25 

 
 

Column Name ID LAST_NAME FIRST_NAME DEPT_ID 

Key Type     

Nulls/Unique     

FK Table    DEPT 

FK Column    ID 

Data type NUMBER VARCHAR2 VARCHAR2 NUMBER 

Length 7 25 25 7 

 



Practice 10-1: Using DDL Statements to Create and Manage 
Tables (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 75 

4) Create the EMPLOYEES2 table based on the structure of the EMPLOYEES table. Include 
only the EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, and DEPARTMENT_ID 
columns. Name the columns in your new table ID, FIRST_NAME, LAST_NAME, 
SALARY, and DEPT_ID, respectively. 

5) Alter the EMPLOYEES2 table status to read-only. 

6) Try to insert the following row in the EMPLOYEES2 table: 

You get the following error message: 
 

 
 

7) Revert the EMPLOYEES2 table to the read/write status. Now, try to insert the same 
row again. You should get the following messages: 

 

8) Drop the EMPLOYEES2 table. 

ID FIRST_NAME LAST_NAME SALARY DEPT_ID 

34 Grant Marcie 5678 10 

 
 



 

Oracle Database 11g: SQL Fundamentals I   A - 76 

Practice Solutions 10-1: Using DDL Statements to Create and 
Manage Tables 
1) Create the DEPT table based on the following table instance chart. Save the statement 

in a script called lab_10_01.sql, and then execute the statement in the script to 
create the table. Confirm that the table is created. 

CREATE TABLE dept 
 (id   NUMBER(7)CONSTRAINT department_id_pk PRIMARY KEY, 
  name VARCHAR2(25)); 

To confirm that the table was created and to view its structure, issue the following 
command: 

DESCRIBE dept 

2) Populate the DEPT table with data from the DEPARTMENTS table. Include only those 
columns that you need. 

INSERT INTO dept 
  SELECT  department_id, department_name 
  FROM    departments; 

3) Create the EMP table based on the following table instance chart. Save the statement 
in a script called lab_10_03.sql, and then execute the statement in the script to 
create the table. Confirm that the table is created. 

 

Column Name ID NAME 

Key Type Primary key  

Nulls/Unique   

FK Table   

FK Column   

Data type NUMBER VARCHAR2 

Length 7 25 

 
 

Column Name ID LAST_NAME FIRST_NAME DEPT_ID 

Key Type     

Nulls/Unique     

FK Table    DEPT 

FK Column    ID 

Data type NUMBER VARCHAR2 VARCHAR2 NUMBER 

Length 7 25 25 7 

 



Practice Solutions 10-1: Using DDL Statements to Create and 
Manage Tables (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 77 

CREATE TABLE  emp 
  (id           NUMBER(7), 
   last_name     VARCHAR2(25), 
   first_name    VARCHAR2(25), 
   dept_id       NUMBER(7) 
     CONSTRAINT emp_dept_id_FK REFERENCES dept (id) 
   ); 

To confirm that the table was created and to view its structure: 

DESCRIBE emp 

4) Create the EMPLOYEES2 table based on the structure of the EMPLOYEES table. Include 
only the EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, and DEPARTMENT_ID 
columns. Name the columns in your new table ID, FIRST_NAME, LAST_NAME, 
SALARY, and DEPT_ID, respectively. 

CREATE TABLE employees2 AS 
  SELECT  employee_id id, first_name, last_name, salary,    
          department_id dept_id 
  FROM    employees; 

5) Alter the EMPLOYEES2 table status to read-only. 

ALTER TABLE employees2 READ ONLY 

6) Try to insert the following row in the EMPLOYEES2 table.  

Note, you will get the “Update operation not allowed on table” error message. 
Therefore, you will not be allowed to insert any row into the table because it is 
assigned a read-only status. 

INSERT INTO employees2 
VALUES (34, 'Grant','Marcie',5678,10) 

7) Revert the EMPLOYEES2 table to the read/write status. Now try to insert the same row 
again. 

Now, because the table is assigned a READ WRITE status, you will be allowed to 
insert a row into the table. 

ALTER TABLE employees2 READ WRITE 
 
INSERT INTO employees2 
VALUES (34, 'Grant','Marcie',5678,10) 

 

 

ID FIRST_NAME LAST_NAME SALARY DEPT_ID 

34 Grant Marcie 5678 10 

 
 



Practice Solutions 10-1: Using DDL Statements to Create and 
Manage Tables (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 78 

8) Drop the EMPLOYEES2 table. 

Note: You can even drop a table that is in the READ ONLY mode. To test this, alter 
the table again to READ ONLY status, and then issue the DROP TABLE command. The 
table EMPLOYEES2 will be dropped.   

DROP TABLE employees2; 

 
 
 
 
 
 
 
 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 79 

Practices for Lesson 11 
Part 1 of this lesson’s practice provides you with a variety of exercises in creating, using, 
and removing views. Complete questions 1–6 of this lesson. 
Part 2 of this lesson’s practice provides you with a variety of exercises in creating and 
using a sequence, an index, and a synonym. Complete questions 7–10 of this lesson. 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 80 

Practice 11-1: Creating Other Schema Objects 
Part 1 

1) The staff in the HR department wants to hide some of the data in the EMPLOYEES 
table. Create a view called EMPLOYEES_VU based on the employee numbers, 
employee last names, and department numbers from the EMPLOYEES table. The 
heading for the employee name should be EMPLOYEE. 

2) Confirm that the view works. Display the contents of the EMPLOYEES_VU view.  

 

… 

 

3) Using your EMPLOYEES_VU view, write a query for the HR department to display all 
employee names and department numbers. 

 

… 

 

4) Department 50 needs access to its employee data. Create a view named DEPT50 that 
contains the employee numbers, employee last names, and department numbers for 
all employees in department 50. You have been asked to label the view columns 
EMPNO, EMPLOYEE, and DEPTNO. For security purposes, do not allow an employee to 
be reassigned to another department through the view. 

5) Display the structure and contents of the DEPT50 view.        

 



Practice 11-1: Creating Other Schema Objects (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 81 

 

6) Test your view. Attempt to reassign Matos to department 80. 

 

Part 2 

7) You need a sequence that can be used with the PRIMARY KEY column of the DEPT 
table. The sequence should start at 200 and have a maximum value of 1,000. Have 
your sequence increment by 10. Name the sequence DEPT_ID_SEQ. 

8) To test your sequence, write a script to insert two rows in the DEPT table. Name your 
script lab_11_08.sql. Be sure to use the sequence that you created for the ID 
column. Add two departments: Education and Administration. Confirm your 
additions. Run the commands in your script. 

9) Create a nonunique index on the NAME column in the DEPT table. 

10) Create a synonym for your EMPLOYEES table. Call it EMP. 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 82 

Practice Solutions 11-1: Creating Other Schema Objects 
Part 1 

1) The staff in the HR department wants to hide some of the data in the EMPLOYEES 
table. Create a view called EMPLOYEES_VU based on the employee numbers, 
employee last names, and department numbers from the EMPLOYEES table. The 
heading for the employee name should be EMPLOYEE. 

CREATE OR REPLACE VIEW employees_vu AS 
    SELECT employee_id, last_name employee, department_id 
    FROM employees; 

2) Confirm that the view works. Display the contents of the EMPLOYEES_VU view. 

SELECT   * 
FROM     employees_vu; 

3) Using your EMPLOYEES_VU view, write a query for the HR department to display all 
employee names and department numbers. 

SELECT   employee, department_id  
FROM     employees_vu; 

4) Department 50 needs access to its employee data. Create a view named DEPT50 that 
contains the employee numbers, employee last names, and department numbers for 
all employees in department 50. They have requested that you label the view columns 
EMPNO, EMPLOYEE, and DEPTNO. For security purposes, do not allow an employee to 
be reassigned to another department through the view. 

CREATE VIEW dept50 AS    
   SELECT   employee_id empno, last_name employee, 
            department_id deptno 
   FROM     employees 
   WHERE    department_id = 50 
   WITH CHECK OPTION CONSTRAINT emp_dept_50; 

5) Display the structure and contents of the DEPT50 view. 

DESCRIBE dept50 
 
SELECT   * 
FROM     dept50; 

6) Test your view. Attempt to reassign Matos to department 80. 

UPDATE   dept50 
SET      deptno = 80 
WHERE    employee = 'Matos'; 

The error is because the DEPT50 view has been created with the WITH CHECK 
OPTION constraint. This ensures that the DEPTNO column in the view is protected 
from being changed. 

 



Practice Solutions 11-1: Creating Other Schema Objects 
(continued) 

Oracle Database 11g: SQL Fundamentals I   A - 83 

Part 2 

7) You need a sequence that can be used with the primary key column of the DEPT table. 
The sequence should start at 200 and have a maximum value of 1,000. Have your 
sequence increment by 10. Name the sequence DEPT_ID_SEQ. 

CREATE SEQUENCE dept_id_seq 
  START WITH 200 
  INCREMENT BY 10 
  MAXVALUE 1000; 

8) To test your sequence, write a script to insert two rows in the DEPT table. Name your 
script lab_11_08.sql. Be sure to use the sequence that you created for the ID 
column. Add two departments: Education and Administration. Confirm your 
additions. Run the commands in your script. 

INSERT INTO dept 
VALUES (dept_id_seq.nextval, 'Education'); 
 
INSERT INTO dept 
VALUES (dept_id_seq.nextval, 'Administration'); 

9) Create a nonunique index on the NAME column in the DEPT table. 

CREATE INDEX dept_name_idx ON dept (name); 

10) Create a synonym for your EMPLOYEES table. Call it EMP. 

CREATE SYNONYM emp FOR EMPLOYEES; 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 84 

Practices for Appendix F 
This practice is intended to give you practical experience in extracting data from more 
than one table using the Oracle join syntax. 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 85 

Practice F-1: Oracle Join Syntax 
1) Write a query for the HR department to produce the addresses of all the departments. 

Use the LOCATIONS and COUNTRIES tables. Show the location ID, street address, 
city, state or province, and country in the output. Run the query. 

 

2) The HR department needs a report of all employees. Write a query to display the last 
name, department number, and department name for all employees. Run the query. 

 

… 

 

3) The HR department needs a report of employees in Toronto. Display the last name, 
job, department number, and department name for all employees who work in 
Toronto. 

 

4) Create a report to display the employees’ last names and employee number along 
with their managers’ last names and manager number. Label the columns Employee, 
Emp#, Manager, and Mgr#, respectively. Save your SQL statement as 
lab_f_04.sql. 

 

… 

 



Practice F-1: Oracle Join Syntax (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 86 

5) Modify lab_f_04.sql to display all employees including King, who has no 
manager. Order the results by the employee number. Save your SQL statement as 
lab_f_05.sql. Run the query in lab_f_05.sql. 

 

… 

 

6) Create a report for the HR department that displays employee last names, department 
numbers, and all employees who work in the same department as a given employee. 
Give each column an appropriate label. Save the script to a file named 
lab_f_06.sql. 

 

… 

 

7) The HR department needs a report on job grades and salaries. To familiarize yourself 
with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then 
create a query that displays the name, job, department name, salary, and grade for all 
employees. 

 



Practice F-1: Oracle Join Syntax (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 87 

 

… 

 

 

If you want an extra challenge, complete the following exercises: 

8) The HR department wants to determine the names of all employees who were hired 
after Davies. Create a query to display the name and hire date of any employee hired 
after employee Davies. 

 

9) The HR department needs to find the names and hire dates for all employees who 
were hired before their managers, along with their managers’ names and hire dates. 
Save the script to a file named lab_f_09.sql. 

 

 



 

Oracle Database 11g: SQL Fundamentals I   A - 88 

Practice Solutions F-1: Oracle Join Syntax 
1) Write a query for the HR department to produce the addresses of all the departments. 

Use the LOCATIONS and COUNTRIES tables. Show the location ID, street address, 
city, state or province, and country in the output. Run the query. 

SELECT location_id, street_address, city, state_province, 
country_name 
FROM   locations, countries 
WHERE  locations.country_id = countries.country_id; 

2) The HR department needs a report of all employees. Write a query to display the last 
name, department number, and department name for all employees. Run the query. 

SELECT e.last_name, e.department_id, d.department_name 
FROM   employees e, departments d  
WHERE  e.department_id = d.department_id; 

3) The HR department needs a report of employees in Toronto. Display the last name, 
job, department number, and department name for all employees who work in 
Toronto. 

SELECT e.last_name, e.job_id, e.department_id, 
d.department_name 
FROM   employees e, departments d , locations l 
WHERE  e.department_id = d.department_id 
AND    d.location_id = l.location_id 
AND    LOWER(l.city) = 'toronto'; 

4) Create a report to display the employee last name and the employee number along 
with the last name of the employee’s manager and manager number. Label the 
columns Employee, Emp#, Manager, and Mgr#, respectively. Save your SQL 
statement as lab_f_04.sql. 

SELECT w.last_name "Employee", w.employee_id "EMP#",  
       m.last_name "Manager", m.employee_id  "Mgr#" 
FROM   employees w, employees m 
WHERE  w.manager_id = m.employee_id; 

5) Modify lab_f_04.sql to display all employees including King, who has no 
manager. Order the results by the employee number. Save the SQL statement as 
lab_f_05.sql. Run the query in lab_f_05.sql.    

SELECT w.last_name "Employee", w.employee_id "EMP#",  
       m.last_name "Manager", m.employee_id  "Mgr#" 
FROM   employees w, employees m 
WHERE  w.manager_id  = m.employee_id (+); 

 
 
 
 
 
 



Practice Solutions F-1: Oracle Join Syntax (continued) 

Oracle Database 11g: SQL Fundamentals I   A - 89 

6) Create a report for the HR department that displays employee last names, department 
numbers, and all the employees who work in the same department as a given 
employee. Give each column an appropriate label. Save the script to a file named 
lab_f_06.sql. 

SELECT e1.department_id department, e1.last_name employee, 
       e2.last_name colleague 
FROM   employees e1, employees e2 
WHERE  e1.department_id = e2.department_id 
AND    e1.employee_id <> e2.employee_id  
ORDER BY e1.department_id, e1.last_name, e2.last_name; 

7) The HR department needs a report on job grades and salaries. To familiarize yourself 
with the JOB_GRADES table, first show the structure of the JOB_GRADES table. Then 
create a query that displays the name, job, department name, salary, and grade for all 
employees.  

DESC JOB_GRADES 
 
SELECT e.last_name, e.job_id, d.department_name, 
       e.salary, j.grade_level 
FROM   employees e, departments d, job_grades j 
WHERE  e.department_id = d.department_id 
AND    e.salary BETWEEN j.lowest_sal AND j.highest_sal; 

 
If you want an extra challenge, complete the following exercises: 

8) The HR department wants to determine the names of all employees hired after 
Davies. Create a query to display the name and hire date of any employee hired after 
Davies. 

SELECT e.last_name, e.hire_date 
FROM   employees e , employees davies 
WHERE  davies.last_name = 'Davies' 
AND    davies.hire_date < e.hire_date; 

9) The HR department needs to find the names and hire dates for all employees who 
were hired before their managers, along with their managers’ names and hire dates. 
Label the columns Employee, Emp Hired, Manager, and Mgr Hired, 
respectively. Save the script to a file named lab_f_09.sql. 

SELECT w.last_name, w.hire_date, m.last_name, m.hire_date 
FROM   employees w , employees m 
WHERE  w.manager_id = m.employee_id 
AND    w.hire_date <  m.hire_date; 

 





Copyright © 2009, Oracle. All rights reserved.

Table Descriptions



Oracle Database 11g: SQL Fundamentals I   B - 2

Schema Description

Overall Description

The Oracle Database sample schemas portray a sample company that operates worldwide to fill 
orders for several different products. The company has three divisions:

• Human Resources: Tracks information about the employees and facilities
• Order Entry: Tracks product inventories and sales through various channels
• Sales History: Tracks business statistics to facilitate business decisions

Each of these divisions is represented by a schema. In this course, you have access to the objects in 
all the schemas. However, the emphasis of the examples, demonstrations, and practices is on the 
Human Resources (HR) schema.

All scripts necessary to create the sample schemas reside in the
$ORACLE_HOME/demo/schema/ folder.

Human Resources (HR)

This is the schema that is used in this course. In the Human Resource (HR) records, each employee 
has an identification number, email address, job identification code, salary, and manager. Some 
employees earn commissions in addition to their salary.

The company also tracks information about jobs within the organization. Each job has an 
identification code, job title, and a minimum and maximum salary range for the job. Some 
employees have been with the company for a long time and have held different positions within the 
company. When an employee resigns, the duration the employee was working for, the job 
identification number, and the department are recorded. 

The sample company is regionally diverse, so it tracks the locations of its warehouses and 
departments. Each employee is assigned to a department, and each department is identified either by 
a unique department number or a short name. Each department is associated with one location, and 
each location has a full address that includes the street name, postal code, city, state or province, and 
the country code.

In places where the departments and warehouses are located, the company records details such as the 
country name, currency symbol, currency name, and the region where the country is located 
geographically.



Oracle Database 11g: SQL Fundamentals I   B - 3

HR Entity Relationship Diagram

HR DEPARTMENTS
department_id

department_name
manager_id
location_id

LOCATIONS
location_id

street_address
postal_code

city
state_province

country_id

COUNTRIES
country_id

country_name
region_id

REGIONS
region_id

region_name

EMPLOYEES
employee_id

first_name
last_name

email
phone_number

hire_date
job_id
salary

commission_pct
manager_id

department_id

JOBS
job_id

job_title
min_salary
max_salary

JOB_HISTORY
employee_id
start_date
end_date

job_id
department_id



Oracle Database 11g: SQL Fundamentals I   B - 4

Human Resources (HR) Table Descriptions

DESCRIBE countries

SELECT * FROM countries;



Oracle Database 11g: SQL Fundamentals I   B - 5

Human Resources (HR) Table Descriptions (continued)

DESCRIBE departments

SELECT * FROM departments;



Oracle Database 11g: SQL Fundamentals I   B - 6

Human Resources (HR) Table Descriptions (continued)

DESCRIBE employees

SELECT * FROM employees;

.  .  .



Oracle Database 11g: SQL Fundamentals I   B - 7

Human Resources (HR) Table Descriptions (continued)

DESCRIBE job_history

SELECT * FROM job_history



Oracle Database 11g: SQL Fundamentals I   B - 8

Human Resources (HR) Table Descriptions (continued)

DESCRIBE jobs

SELECT * FROM jobs



Oracle Database 11g: SQL Fundamentals I   B - 9

Human Resources (HR) Table Descriptions (continued)

DESCRIBE locations

SELECT * FROM locations



Oracle Database 11g: SQL Fundamentals I   B - 10

Human Resources (HR) Table Descriptions (continued)

DESCRIBE regions

SELECT * FROM regions



Copyright © 2009, Oracle. All rights reserved.

Using SQL Developer



Oracle Database 11g: SQL Fundamentals I   C - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the 
following:

• List the key features of Oracle SQL Developer

• Identify the menu items of Oracle SQL Developer

• Create a database connection

• Manage database objects

• Use SQL Worksheet

• Save and run SQL scripts

• Create and save reports

Objectives

In this appendix, you are introduced to the graphical tool called SQL Developer. You learn how 
to use SQL Developer for your database development tasks. You learn how to use SQL 
Worksheet to execute SQL statements and SQL scripts.



Oracle Database 11g: SQL Fundamentals I   C - 3

Copyright © 2009, Oracle. All rights reserved.

What Is Oracle SQL Developer?

• Oracle SQL Developer is a graphical tool that enhances 
productivity and simplifies database development tasks.

• You can connect to any target Oracle database schema by 
using standard Oracle database authentication.

SQL Developer

What Is Oracle SQL Developer?

Oracle SQL Developer is a free graphical tool designed to improve your productivity and 
simplify the development of everyday database tasks. With just a few clicks, you can easily 
create and debug stored procedures, test SQL statements, and view optimizer plans.

SQL Developer, which is the visual tool for database development, simplifies the following 
tasks:

• Browsing and managing database objects
• Executing SQL statements and scripts
• Editing and debugging PL/SQL statements
• Creating reports

You can connect to any target Oracle database schema by using standard Oracle database 
authentication. When connected, you can perform operations on objects in the database.

The SQL Developer 1.2 release tightly integrates with Developer Migration Workbench that 
provides users with a single point to browse database objects and data in third-party databases, 
and to migrate from these databases to Oracle. You can also connect to schemas for selected 
third-party (non-Oracle) databases, such as MySQL, Microsoft SQL Server, and Microsoft 
Access, and view metadata and data in these databases.

Additionally, SQL Developer includes support for Oracle Application Express 3.0.1 (Oracle 
APEX).



Oracle Database 11g: SQL Fundamentals I   C - 4

Copyright © 2009, Oracle. All rights reserved.

Specifications of SQL Developer

• Shipped along with Oracle Database 11g Release 2

• Developed in Java

• Supports Windows, Linux, and Mac OS X platforms

• Enables default connectivity using the JDBC Thin driver

• Connects to Oracle Database version 9.2.0.1 and later

• Freely downloadable from the following link:
– http://www.oracle.com/technology/products/database/

sql_developer/index.html

Specifications of SQL Developer

Oracle SQL Developer 1.5 is shipped along with Oracle Database 11g Release 2. SQL 
Developer is developed in Java leveraging the Oracle JDeveloper integrated development 
environment (IDE). Therefore, it is a cross-platform tool. The tool runs on Windows, Linux, and 
Mac operating system (OS) X platforms.

The default connectivity to the database is through the Java Database Connectivity (JDBC) Thin 
driver, and therefore, no Oracle Home is required. SQL Developer does not require an installer 
and you need to simply unzip the downloaded file. With SQL Developer, users can connect to 
Oracle Databases 9.2.0.1 and later, and all Oracle database editions including Express Edition. 

Note

For Oracle Database versions before Oracle Database 11g Release 2, you will have to download 
and install SQL Developer. SQL Developer 1.5 is freely downloadable from the following link:

http://www.oracle.com/technology/products/database/sql_developer/index.html.  

For instructions on how to install SQL Developer, see the Web site at:
http://download.oracle.com/docs/cd/E12151_01/index.htm



Oracle Database 11g: SQL Fundamentals I   C - 5

Copyright © 2009, Oracle. All rights reserved.

SQL Developer 1.5 Interface

You must define a 
connection to start 

using SQL Developer 
for running SQL queries 
on a database schema. 

SQL Developer 1.5 Interface
The SQL Developer 1.5 interface contains three main navigation tabs, from left to right:

• Connections tab: By using this tab, you can browse database objects and users to which 
you have access.

• Files tab: Identified by the Files folder icon, this tab enables you to access files from your 
local machine without having to use the File > Open menu.

• Reports tab: Identified by the Reports icon, this tab enables you to run predefined reports 
or create and add your own reports.

General Navigation and Use

SQL Developer uses the left side for navigation to find and select objects, and the right side to 
display information about selected objects. You can customize many aspects of the appearance 
and behavior of SQL Developer by setting preferences. 

Note: You need to define at least one connection to be able to connect to a database schema and 
issue SQL queries or run procedures/functions.



Oracle Database 11g: SQL Fundamentals I   C - 6

SQL Developer 1.5 Interface (continued)

Menus

The following menus contain standard entries, plus entries for features specific to SQL 
Developer:

• View: Contains options that affect what is displayed in the SQL Developer interface
• Navigate: Contains options for navigating to panes and for executing subprograms
• Run: Contains the Run File and Execution Profile options that are relevant when a 

function or procedure is selected, and also debugging options.
• Source: Contains options for use when you edit functions and procedures
• Versioning: Provides integrated support for the following versioning and source control 

systems: CVS (Concurrent Versions System) and Subversion.
• Migration: Contains options related to migrating third-party databases to Oracle
• Tools: Invokes SQL Developer tools such as SQL*Plus, Preferences, and SQL Worksheet

Note: The Run menu also contains options that are relevant when a function or procedure is 
selected for debugging. These are the same options that are found in the Debug menu in version 
1.2.



Oracle Database 11g: SQL Fundamentals I   C - 7

Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection

• You must have at least one database connection to use 
SQL Developer.

• You can create and test connections for:
– Multiple databases

– Multiple schemas

• SQL Developer automatically imports any connections 
defined in the tnsnames.ora file on your system.

• You can export connections to an Extensible Markup 
Language (XML) file.

• Each additional database connection created is listed in 
the Connections Navigator hierarchy.

Creating a Database Connection

A connection is a SQL Developer object that specifies the necessary information for connecting 
to a specific database as a specific user of that database. To use SQL Developer, you must have 
at least one database connection, which may be existing, created, or imported.

You can create and test connections for multiple databases and for multiple schemas.

By default, the tnsnames.ora file is located in the $ORACLE_HOME/network/admin
directory, but it can also be in the directory specified by the TNS_ADMIN environment variable 
or registry value. When you start SQL Developer and display the Database Connections dialog 
box, SQL Developer automatically imports any connections defined in the tnsnames.ora file 
on your system.

Note: On Windows, if the tnsnames.ora file exists, but its connections are not being used by 
SQL Developer, define TNS_ADMIN as a system environment variable.

You can export connections to an XML file so that you can reuse it.

You can create additional connections as different users to the same database or to connect to the 
different databases.



Oracle Database 11g: SQL Fundamentals I   C - 8

Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection

1 2

3

Creating a Database Connection (continued)

To create a database connection, perform the following steps:
1. On the Connections tabbed page, right-click Connections and select New Connection.
2. In the New/Select Database Connection window, enter the connection name. Enter the 

username and password of the schema that you want to connect to.
a) From the Role drop-down list, you can select either default or SYSDBA. (You choose 

SYSDBA for the sys user or any user with database administrator privileges.) 
b) You can select the connection type as:

Basic: In this type, enter host name and SID for the database you want to connect 
to. Port is already set to 1521. You can also choose to enter the Service name 
directly if you use a remote database connection.
TNS: You can select any one of the database aliases imported from the 
tnsnames.ora file.
LDAP: You can look up database services in Oracle Internet Directory, which is a 
component of Oracle Identity Management. 
Advanced: You can define a custom Java Database Connectivity (JDBC) URL to 
connect to the database.

c) Click Test to ensure that the connection has been set correctly.
d) Click Connect.



Oracle Database 11g: SQL Fundamentals I   C - 9

Creating a Database Connection (continued)

If you select the Save Password check box, the password is saved to an XML file. So, after 
you close the SQL Developer connection and open it again, you are not prompted for the 
password.

3. The connection gets added in the Connections Navigator. You can expand the connection 
to view the database objects and view object definitions—for example, dependencies, 
details, statistics, and so on.

Note: From the same New/Select Database Connection window, you can define connections to 
non-Oracle data sources using the Access, MySQL, and SQL Server tabs. However, these 
connections are read-only connections that enable you to browse objects and data in that data 
source.



Oracle Database 11g: SQL Fundamentals I   C - 10

Copyright © 2009, Oracle. All rights reserved.

Browsing Database Objects

Use the Connections Navigator to:
• Browse through many objects in a database schema
• Review the definitions of objects at a glance

Browsing Database Objects

After you create a database connection, you can use the Connections Navigator to browse 
through many objects in a database schema including Tables, Views, Indexes, Packages, 
Procedures, Triggers, and Types.

SQL Developer uses the left side for navigation to find and select objects, and the right side to 
display information about the selected objects. You can customize many aspects of the 
appearance of SQL Developer by setting preferences.

You can see the definition of the objects broken into tabs of information that is pulled out of the 
data dictionary. For example, if you select a table in the Navigator, the details about columns, 
constraints, grants, statistics, triggers, and so on are displayed on an easy-to-read tabbed page.

If you want to see the definition of the EMPLOYEES table as shown in the slide, perform the 
following steps:

1. Expand the Connections node in the Connections Navigator. 
2. Expand Tables.
3. Click EMPLOYEES. By default, the Columns tab is selected. It shows the column 

description of the table. Using the Data tab, you can view the table data and also enter new 
rows, update data, and commit these changes to the database.



Oracle Database 11g: SQL Fundamentals I   C - 11

Copyright © 2009, Oracle. All rights reserved.

Displaying the Table Structure

Use the DESCRIBE command to display the structure of a table:

Displaying the Table Structure

In SQL Developer, you can also display the structure of a table using the DESCRIBE command. 
The result of the command is a display of column names and data types as well as an indication 
if a column must contain data.



Oracle Database 11g: SQL Fundamentals I   C - 12

Copyright © 2009, Oracle. All rights reserved.

Browsing Files

Use the File Navigator to explore the file system and open 
system files.

Browsing Database Objects

You can use the File Navigator to browse and open system files.
• To view the files navigator, click the Files tab, or select View > Files.
• To view the contents of a file, double-click a file name to display its contents in the SQL 

worksheet area.



Oracle Database 11g: SQL Fundamentals I   C - 13

Copyright © 2009, Oracle. All rights reserved.

Creating a Schema Object

• SQL Developer supports the creation of any schema 
object by:
– Executing a SQL statement in SQL Worksheet

– Using the context menu

• Edit the objects by using an edit dialog box or one of the 
many context-sensitive menus.

• View the data definition language (DDL) for adjustments 
such as creating a new object or editing an existing 
schema object.

Creating a Schema Object

SQL Developer supports the creation of any schema object by executing a SQL statement in 
SQL Worksheet. Alternatively, you can create objects using the context menus. When created, 
you can edit the objects using an edit dialog box or one of the many context-sensitive menus.

As new objects are created or existing objects are edited, the DDL for those adjustments is 
available for review. An Export DDL option is available if you want to create the full DDL for 
one or more objects in the schema.

The slide shows how to create a table using the context menu. To open a dialog box for creating 
a new table, right-click Tables and select New Table. The dialog boxes to create and edit 
database objects have multiple tabs, each reflecting a logical grouping of properties for that type 
of object.



Oracle Database 11g: SQL Fundamentals I   C - 14

Copyright © 2009, Oracle. All rights reserved.

Creating a New Table: Example 

Creating a New Table: Example

In the Create Table dialog box, if you do not select the Advanced check box, you can create a 
table quickly by specifying columns and some frequently used features.

If you select the Advanced check box, the Create Table dialog box changes to one with multiple 
options, in which you can specify an extended set of features while you create the table.

The example in the slide shows how to create the DEPENDENTS table by selecting the 
Advanced check box. 

To create a new table, perform the following steps:
1. In the Connections Navigator, right-click Tables.
2. Select Create TABLE.
3. In the Create Table dialog box, select Advanced.
4. Specify the column information.
5. Click OK.

Although it is not required, you should also specify a primary key by using the Primary Key tab 
in the dialog box. Sometimes, you may want to edit the table that you have created; to do so, 
right-click the table in the Connections Navigator and select Edit. 



Oracle Database 11g: SQL Fundamentals I   C - 15

Copyright © 2009, Oracle. All rights reserved.

Using the SQL Worksheet

• Use the SQL Worksheet to enter and execute SQL, 
PL/SQL, and SQL *Plus statements.

• Specify any actions that can be processed by the database 
connection associated with the worksheet.

Or, click the Open 
SQL Worksheet
icon.

Select SQL 
Worksheet from the 
Tools menu.

Using the SQL Worksheet

When you connect to a database, a SQL Worksheet window for that connection automatically 
opens. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus 
statements. The SQL Worksheet supports SQL*Plus statements to a certain extent. SQL*Plus 
statements that are not supported by the SQL Worksheet are ignored and not passed to the 
database.

You can specify actions that can be processed by the database connection associated with the 
worksheet, such as:

• Creating a table
• Inserting data
• Creating and editing a trigger
• Selecting data from a table
• Saving the selected data to a file

You can display a SQL Worksheet by using one of the following:
• Select Tools > SQL Worksheet.
• Click the Open SQL Worksheet icon.



Oracle Database 11g: SQL Fundamentals I   C - 16

Copyright © 2009, Oracle. All rights reserved.

Using the SQL Worksheet

1

2

3

4

5

6

7

8

9

Using the SQL Worksheet (continued)

You may want to use the shortcut keys or icons to perform certain tasks such as executing a SQL 
statement, running a script, and viewing the history of SQL statements that you have executed. 
You can use the SQL Worksheet toolbar that contains icons to perform the following tasks:

1. Execute Statement: Executes the statement where the cursor is located in the Enter SQL 
Statement box. You can use bind variables in the SQL statements, but not substitution 
variables.

2. Run Script: Executes all statements in the Enter SQL Statement box by using the Script 
Runner. You can use substitution variables in the SQL statements, but not bind variables.

3. Commit: Writes any changes to the database and ends the transaction
4. Rollback: Discards any changes to the database, without writing them to the database, and 

ends the transaction
5. Cancel: Stops the execution of any statements currently being executed
6. SQL History: Displays a dialog box with information about SQL statements that you have 

executed
7. Execute Explain Plan: Generates the execution plan, which you can see by clicking the

Explain tab
8. Autotrace: Generates trace information for the statement
9. Clear: Erases the statement or statements in the Enter SQL Statement box



Oracle Database 11g: SQL Fundamentals I   C - 17

Copyright © 2009, Oracle. All rights reserved.

Using the SQL Worksheet

Enter SQL 
statements.

Results are 
shown here.

Using the SQL Worksheet (continued)

When you connect to a database, a SQL Worksheet window for that connection automatically 
opens. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus 
statements. All SQL and PL/SQL commands are supported as they are passed directly from the 
SQL Worksheet to the Oracle database. SQL*Plus commands used in the SQL Developer have 
to be interpreted by the SQL Worksheet before being passed to the database. 

The SQL Worksheet currently supports a number of SQL*Plus commands. Commands not 
supported by the SQL Worksheet are ignored and are not sent to the Oracle database. Through 
the SQL Worksheet, you can execute SQL statements and some of the SQL*Plus commands.

You can display a SQL Worksheet by using any of the following options:
• Select Tools > SQL Worksheet.
• Click the Open SQL Worksheet icon.



Oracle Database 11g: SQL Fundamentals I   C - 18

Copyright © 2009, Oracle. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple 
SQL statements.

F9 F5

F9

F5

Executing SQL Statements

The example in the slide shows the difference in output for the same query when the [F9] key or 
Execute Statement is used versus the output when [F5] or Run Script is used.



Oracle Database 11g: SQL Fundamentals I   C - 19

Copyright © 2009, Oracle. All rights reserved.

Saving SQL Scripts

Click the Save icon to 
save your SQL 
statement to a file.

The contents of the saved 
file are visible and editable 
in your SQL Worksheet 
window.

Identify a location, 
enter a file name, 
and click Save. 

1

2
3

Saving SQL Scripts

You can save your SQL statements from the SQL Worksheet into a text file. To save the 
contents of the Enter SQL Statement box, perform the following steps:

1. Click the Save icon or use the File > Save menu item.
2. In the Save dialog box, enter a file name and the location where you want the file saved.
3. Click Save.

After you save the contents to a file, the Enter SQL Statement window displays a tabbed page of 
your file contents. You can have multiple files open at the same time. Each file displays as a 
tabbed page.

Script Pathing

You can select a default path to look for scripts and to save scripts. Under Tools > Preferences > 
Database > Worksheet Parameters, enter a value in the “Select default path to look for scripts”
field.



Oracle Database 11g: SQL Fundamentals I   C - 20

Copyright © 2009, Oracle. All rights reserved.

1. Use the Files tab to locate the 
script file that you want to open.

2. Double-click the script to display 
the code in the SQL Worksheet.

Executing Saved Script Files: Method 1

To run the code, click either:

• Execute Script (F9), or

• Run Script (F5)

1

3 Select a connection from 
the drop-down list.

2

Executing Saved Script Files: Method 1

To open a script file and display the code in the SQL Worksheet area, perform the following 
steps: 

1. In the files navigator, select (or navigate to) the script file that you want to open. 
2. Double-click to open. The code of the script file is displayed in the SQL Worksheet area.
3. Select a connection from the connection drop-down list. 
4. To run the code, click the Run Script (F5) icon on the SQL Worksheet toolbar. If you have 

not selected a connection from the connection drop-down list, a connection dialog box will 
appear. Select the connection you want to use for the script execution.

Alternatively, you can also do the following:
1. Select File > Open. The Open dialog box is displayed.
2. In the Open dialog box, select (or navigate to) the script file that you want to open.
3. Click Open. The code of the script file is displayed in the SQL Worksheet area.
4. Select a connection from the connection drop-down list. 
5. To run the code, click the Run Script (F5) icon on the SQL Worksheet toolbar. If you have 

not selected a connection from the connection drop-down list, a connection dialog box will 
appear. Select the connection you want to use for the script execution 



Oracle Database 11g: SQL Fundamentals I   C - 21

Copyright © 2009, Oracle. All rights reserved.

Executing Saved Script Files: Method 2

Use the @ command 
followed by the location and 
name of the file that you 
want to execute, and click 
the Run Script icon.

The output from the 
script is displayed on 
the Script Output 
tabbed page.

Executing Saved Script Files: Method 2 

To run a saved SQL script, perform the following steps:
1. Use the @ command, followed by the location, and name of the file you want to run, in the 

Enter SQL Statement window.
2. Click the Run Script icon.

The results from running the file are displayed on the Script Output tabbed page. You can also 
save the script output by clicking the Save icon on the Script Output tabbed page. The File Save 
dialog box appears and you can identify a name and location for your file.



Oracle Database 11g: SQL Fundamentals I   C - 22

Copyright © 2009, Oracle. All rights reserved.

Formatting the SQL Code

Before 
formatting

After 
formatting

Formatting the SQL Code

You may want to format the indentation, spacing, capitalization, and line separation of the SQL 
code. SQL Developer has a feature for formatting SQL code.

To format the SQL code, right-click in the statement area, and select Format SQL.

In the example in the slide, before formatting, the SQL code has the keywords not capitalized 
and the statement not properly indented. After formatting, the SQL code is beautified with the 
keywords capitalized and the statement properly indented.



Oracle Database 11g: SQL Fundamentals I   C - 23

Copyright © 2009, Oracle. All rights reserved.

Using Snippets

Snippets are code fragments that may be just syntax or 
examples.

When you place your cursor here, 
it shows the Snippets window. 

From the drop-down list, you can 
select the functions category that 

you want. 

Using Snippets

You may want to use certain code fragments when you use the SQL Worksheet or create or edit 
a PL/SQL function or procedure. SQL Developer has the feature called Snippets. Snippets are 
code fragments such as SQL functions, Optimizer hints, and miscellaneous PL/SQL 
programming techniques. You can drag snippets into the Editor window.

To display Snippets, select View > Snippets.

The Snippets window is displayed at the right. You can use the drop-down list to select a group. 
A Snippets button is placed in the right window margin, so that you can display the Snippets 
window if it becomes hidden.



Oracle Database 11g: SQL Fundamentals I   C - 24

Copyright © 2009, Oracle. All rights reserved.

Using Snippets: Example

Inserting a
snippet

Editing the 
snippet

Using Snippets: Example

To insert a Snippet into your code in a SQL Worksheet or in a PL/SQL function or procedure, 
drag the snippet from the Snippets window to the desired place in your code. Then you can edit 
the syntax so that the SQL function is valid in the current context. To see a brief description of a 
SQL function in a tool tip, place the cursor over the function name.

The example in the slide shows that CONCAT(char1, char2)is dragged from the Character 
Functions group in the Snippets window. Then the CONCAT function syntax is edited and the 
rest of the statement is added as in the following:

SELECT CONCAT(first_name, last_name)
FROM employees;



Oracle Database 11g: SQL Fundamentals I   C - 25

Copyright © 2009, Oracle. All rights reserved.

Debugging Procedures and Functions

• Use SQL Developer to debug 
PL/SQL functions and 
procedures.

• Use the Compile for Debug 
option to perform a PL/SQL 
compilation so that the 
procedure can be debugged.

• Use the Debug menu options to 
set breakpoints, and to perform 
step into, step over tasks.

Debugging Procedures and Functions

In SQL Developer, you can debug PL/SQL procedures and functions. Using the Debug menu 
options, you can perform the following debugging tasks:

• Find Execution Point goes to the next execution point. 
• Resume continues execution.
• Step Over bypasses the next method and goes to the next statement after the method. 
• Step Into goes to the first statement in the next method. 
• Step Out leaves the current method and goes to the next statement. 
• Step to End of Method goes to the last statement of the current method. 
• Pause halts execution, but does not exit, thus allowing you to resume execution. 
• Terminate halts and exits the execution. You cannot resume execution from this point; 

instead, to start running or debugging from the beginning of the function or procedure, 
click the Run or Debug icon on the Source tab toolbar. 

• Garbage Collection removes invalid objects from the cache in favor of more frequently 
accessed and more valid objects.

These options are also available as icons on the debugging toolbar.



Oracle Database 11g: SQL Fundamentals I   C - 26

Copyright © 2009, Oracle. All rights reserved.

Database Reporting

SQL Developer provides a number of predefined reports about 
the database and its objects.

Database Reporting

SQL Developer provides many reports about the database and its objects. These reports can be 
grouped into the following categories:

• About Your Database reports
• Database Administration reports
• Table reports
• PL/SQL reports
• Security reports
• XML reports
• Jobs reports
• Streams reports
• All Objects reports
• Data Dictionary reports
• User-Defined reports

To display reports, click the Reports tab at the left of the window. Individual reports are 
displayed in tabbed panes at the right of the window; and for each report, you can select (using a 
drop-down list) the database connection for which to display the report. For reports about 
objects, the objects shown are only those visible to the database user associated with the selected 
database connection, and the rows are usually ordered by Owner. You can also create your own 
user-defined reports.



Oracle Database 11g: SQL Fundamentals I   C - 27

Copyright © 2009, Oracle. All rights reserved.

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

Organize reports in folders.

Creating a User-Defined Report

User-defined reports are reports created by SQL Developer users. To create a user-defined 
report, perform the following steps:

1. Right-click the User Defined Reports node under Reports, and select Add Report.
2. In the Create Report dialog box, specify the report name and the SQL query to retrieve 

information for the report. Then click Apply.

In the example in the slide, the report name is specified as emp_sal. An optional description is 
provided indicating that the report contains details of employees with salary >= 10000. 
The complete SQL statement for retrieving the information to be displayed in the user-defined 
report is specified in the SQL box. You can also include an optional tool tip to be displayed 
when the cursor stays briefly over the report name in the Reports navigator display.

You can organize user-defined reports in folders, and you can create a hierarchy of folders and 
subfolders. To create a folder for user-defined reports, right-click the User Defined Reports node 
or any folder name under that node and select Add Folder. Information about user-defined 
reports, including any folders for these reports, is stored in a file named UserReports.xml
under the directory for user-specific information.



Oracle Database 11g: SQL Fundamentals I   C - 28

Copyright © 2009, Oracle. All rights reserved.

Search Engines and External Tools

Links to popular 
search engines and 
discussion forums

Shortcuts to 
frequently used tools

1

2

Search Engines and External Tools

To enhance productivity of the SQL developers, SQL Developer has added quick links to 
popular search engines and discussion forums such as AskTom, Google, and so on. Also, you 
have shortcut icons to some of the frequently used tools such as Notepad, Microsoft Word, and 
Dreamweaver, available to you. 

You can add external tools to the existing list or even delete shortcuts to tools that you do not 
use frequently. To do so, perform the following steps:

1. From the Tools menu, select External Tools.
2. In the External Tools dialog box, select New to add new tools. Select Delete to remove any 

tool from the list.



Oracle Database 11g: SQL Fundamentals I   C - 29

Copyright © 2009, Oracle. All rights reserved.

Setting Preferences

• Customize the SQL Developer interface and environment.

• In the Tools menu, select Preferences.

Setting Preferences

You can customize many aspects of the SQL Developer interface and environment by modifying 
SQL Developer preferences according to your preferences and needs. To modify SQL Developer 
preferences, select Tools, then Preferences.

The preferences are grouped into the following categories:
• Environment
• Accelerators (Keyboard shortcuts)
• Code Editors
• Database
• Debugger
• Documentation
• Extensions
• File Types
• Migration 
• PL/SQL Compilers
• PL/SQL Debugger



Oracle Database 11g: SQL Fundamentals I   C - 30

Copyright © 2009, Oracle. All rights reserved.

Resetting the SQL Developer Layout

Resetting the SQL Developer Layout

While working with SQL Developer, if the Connections Navigator disappears or if you cannot 
dock the Log window in its original place, perform the following steps to fix the problem: 

1. Exit from SQL Developer.
2. Open a terminal window and use the locate command to find the location of 

windowinglayout.xml.
3. Go to the directory that has windowinglayout.xml and delete it.
4. Restart SQL Developer. 



Oracle Database 11g: SQL Fundamentals I   C - 31

Copyright © 2009, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL 
Developer to do the following:

• Browse, create, and edit database objects

• Execute SQL statements and scripts in SQL Worksheet

• Create and save custom reports

Summary 

SQL Developer is a free graphical tool to simplify database development tasks. Using SQL 
Developer, you can browse, create, and edit database objects. You can use SQL Worksheet to 
run SQL statements and scripts. SQL Developer enables you to create and save your own special 
set of reports for repeated use.





Copyright © 2009, Oracle. All rights reserved.

Using SQL*Plus 



Oracle Database 11g: SQL Fundamentals I  D - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the 
following:

• Log in to SQL*Plus

• Edit SQL commands

• Format the output using SQL*Plus commands

• Interact with script files

Objectives

You might want to create SELECT statements that can be used again and again. This appendix also
covers the use of SQL*Plus commands to execute SQL statements. You learn how to format output 
using SQL*Plus commands, edit SQL commands, and save scripts in SQL*Plus.



Oracle Database 11g: SQL Fundamentals I  D - 3

Copyright © 2009, Oracle. All rights reserved.

SQL and SQL*Plus Interaction

Buffer

Server

SQL statements

Query results

SQL 
scripts

SQL*Plus

SQL and SQL*Plus 

SQL is a command language used for communication with the Oracle server from any tool or 
application. Oracle SQL contains many extensions. When you enter a SQL statement, it is stored in a 
part of memory called the SQL buffer and remains there until you enter a new SQL statement. 
SQL*Plus is an Oracle tool that recognizes and submits SQL statements to the Oracle9i Server for 
execution. It contains its own command language.

Features of SQL
• Can be used by a range of users, including those with little or no programming

experience
• Is a nonprocedural language
• Reduces the amount of time required for creating and maintaining systems
• Is an English-like language

Features of SQL*Plus 
• Accepts ad hoc entry of statements
• Accepts SQL input from files
• Provides a line editor for modifying SQL statements
• Controls environmental settings
• Formats query results into basic reports
• Accesses local and remote databases



Oracle Database 11g: SQL Fundamentals I  D - 4

Copyright © 2009, Oracle. All rights reserved.

SQL Statements Versus SQL*Plus Commands 

SQL

• A language

• ANSI-standard

• Keywords cannot be
abbreviated.

• Statements manipulate 
data
and table definitions in the
database.

SQL
statements

SQL
buffer

SQL*Plus 
commands

SQL*Plus 
buffer

SQL*Plus 

• An environment

• Oracle-proprietary

• Keywords can be 
abbreviated.

• Commands do not 
allow manipulation of 
values in the database.

SQL and SQL*Plus (continued)

The following table compares SQL and SQL*Plus:

SQL SQL*Plus 
Is a language for communicating with the 
Oracle server to access data 

Recognizes SQL statements and sends them 
to the server 

Is based on American National Standards 
Institute (ANSI)–standard SQL 

Is the Oracle-proprietary interface for 
executing SQL statements 

Manipulates data and table definitions in the 
database 

Does not allow manipulation of values in the 
database 

Is entered into the SQL buffer on one or 
more lines 

Is entered one line at a time, not stored in the 
SQL buffer 

Does not have a continuation character Uses a dash (–) as a continuation character if 
the command is longer than one line 

Cannot be abbreviated Can be abbreviated 

Uses a termination character to execute 
commands immediately 

Does not require termination characters; 
executes commands immediately 

Uses functions to perform some formatting Uses commands to format data 

 
 



Oracle Database 11g: SQL Fundamentals I  D - 5

Copyright © 2009, Oracle. All rights reserved.

Overview of SQL*Plus 

• Log in to SQL*Plus.

• Describe the table structure.

• Edit your SQL statement.

• Execute SQL from SQL*Plus.

• Save SQL statements to files and append SQL statements 
to files.

• Execute saved files.

• Load commands from the file to buffer to edit.

SQL*Plus

SQL*Plus is an environment in which you can:
• Execute SQL statements to retrieve, modify, add, and remove data from the database
• Format, perform calculations on, store, and print query results in the form of reports
• Create script files to store SQL statements for repeated use in the future

SQL*Plus commands can be divided into the following main categories:

Category Purpose 

Environment Affect the general behavior of SQL statements for the session 

Format Format query results 

File manipulation Save, load, and run script files 

Execution Send SQL statements from the SQL buffer to the Oracle server 

Edit Modify SQL statements in the buffer 

Interaction Create and pass variables to SQL statements, print variable values, and 
print messages to the screen 

Miscellaneous Connect to the database, manipulate the SQL*Plus environment, and 
display column definitions 

 
 



Oracle Database 11g: SQL Fundamentals I  D - 6

Copyright © 2009, Oracle. All rights reserved.

sqlplus [username[/password[@database]]]

Logging In to SQL*Plus 

1

2

Logging In to SQL*Plus

How you invoke SQL*Plus depends on which type of operating system you are running Oracle 
Database.

To log in from a Linux environment, perform the following steps:
1. Right-click your Linux desktop and select terminal. 
2. Enter the sqlplus command shown in the slide. 
3. Enter the username, password, and database name.

In the syntax:
username Your database username
password Your database password (Your password is visible if you enter it here.)
@database The database connect string

Note: To ensure the integrity of your password, do not enter it at the operating system prompt. 
Instead, enter only your username. Enter your password at the password prompt.



Oracle Database 11g: SQL Fundamentals I  D - 7

Copyright © 2009, Oracle. All rights reserved.

Displaying the Table Structure

Use the SQL*Plus DESCRIBE command to display the structure 
of a table:

DESC[RIBE] tablename

Displaying the Table Structure

In SQL*Plus, you can display the structure of a table using the DESCRIBE command. The result of 
the command is a display of column names and data types as well as an indication if a column must 
contain data.

In the syntax:

tablename The name of any existing table, view, or synonym that is accessible to   
the user

To describe the DEPARTMENTS table, use this command:
SQL> DESCRIBE DEPARTMENTS
Name                    Null?    Type
----------------------- -------- ---------------

DEPARTMENT_ID           NOT NULL NUMBER(4)
DEPARTMENT_NAME         NOT NULL VARCHAR2(30)
MANAGER_ID              NUMBER(6)
LOCATION_ID             NUMBER(4)



Oracle Database 11g: SQL Fundamentals I  D - 8

Copyright © 2009, Oracle. All rights reserved.

Displaying the Table Structure

Name                    Null?    Type
----------------------- -------- ------------
DEPARTMENT_ID           NOT NULL NUMBER(4)
DEPARTMENT_NAME         NOT NULL VARCHAR2(30)
MANAGER_ID              NUMBER(6)
LOCATION_ID             NUMBER(4)

DESCRIBE departments

Displaying the Table Structure (continued)

The example in the slide displays the information about the structure of the DEPARTMENTS table. In 
the result:
Null?: Specifies whether a column must contain data (NOT NULL indicates that a column must 

contain data.)
Type: Displays the data type for a column



Oracle Database 11g: SQL Fundamentals I  D - 9

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus Editing Commands

• A[PPEND] text

• C[HANGE] / old / new

• C[HANGE] / text /

• CL[EAR] BUFF[ER]

• DEL

• DEL n

• DEL m n

SQL*Plus Editing Commands

SQL*Plus commands are entered one line at a time and are not stored in the SQL buffer.

Guidelines

• If you press Enter before completing a command, SQL*Plus prompts you with a line number.
• You terminate the SQL buffer either by entering one of the terminator characters (semicolon or 

slash) or by pressing [Enter] twice. The SQL prompt appears.

Command    Description 
A[PPEND] text  Adds text to the end of the current line 
C[HANGE] / old / new
  

Changes old  text to new  in the current line 

C[HANGE] / text /  Deletes text  from the current line 
CL[EAR] BUFF[ER] Deletes all lines from the SQL buffer 
DEL Deletes current line 
DEL n Deletes line n  
DEL m n Deletes lines m  to n  inclusive 

 

 



Oracle Database 11g: SQL Fundamentals I  D - 10

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus Editing Commands

• I[NPUT]

• I[NPUT] text

• L[IST]

• L[IST] n

• L[IST] m n 

• R[UN]

• n

• n text

• 0 text

SQL*Plus Editing Commands (continued)

Note: You can enter only one SQL*Plus command for each SQL prompt. SQL*Plus commands are 
not stored in the buffer. To continue a SQL*Plus command on the next line, end the first line with a 
hyphen (-).

Command  Description 
I[NPUT]    Inserts an indefinite number of lines 
I[NPUT] text Inserts a line consisting of text 
L[IST] Lists all lines in the SQL buffer 
L[IST] n  Lists one line (specified by n) 
L[IST] m n  Lists a range of lines (m to n) inclusive 
R[UN]  Displays and runs the current SQL statement in the buffer 
n Specifies the line to make the current line 
n text  Replaces line n with text 
0 text  Inserts a line before line 1 

 

 



Oracle Database 11g: SQL Fundamentals I  D - 11

Copyright © 2009, Oracle. All rights reserved.

Using LIST, n, and APPEND

LIST
1  SELECT last_name
2* FROM   employees

1
1* SELECT last_name

A , job_id
1* SELECT last_name, job_id

LIST
1  SELECT last_name, job_id
2* FROM   employees

Using LIST, n, and APPEND

• Use the L[IST] command to display the contents of the SQL buffer. The asterisk (*) beside 
line 2 in the buffer indicates that line 2 is the current line. Any edits that you made apply to the 
current line.

• Change the number of the current line by entering the number (n) of the line that you want to 
edit. The new current line is displayed.

• Use the A[PPEND] command to add text to the current line. The newly edited line is displayed. 
Verify the new contents of the buffer by using the LIST command.

Note: Many SQL*Plus commands, including LIST and APPEND, can be abbreviated to just their 
first letter. LIST can be abbreviated to L; APPEND can be abbreviated to A.



Oracle Database 11g: SQL Fundamentals I  D - 12

Copyright © 2009, Oracle. All rights reserved.

Using the CHANGE Command

LIST
1* SELECT * from employees

c/employees/departments
1* SELECT * from departments

LIST

1* SELECT * from departments

Using the CHANGE Command

• Use L[IST] to display the contents of the buffer.
• Use the C[HANGE] command to alter the contents of the current line in the SQL buffer. In this 

case, replace the employees table with the departments table. The new current line is 
displayed.

• Use the L[IST] command to verify the new contents of the buffer.



Oracle Database 11g: SQL Fundamentals I  D - 13

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus File Commands

• SAVE filename

• GET filename

• START filename

• @ filename

• EDIT filename

• SPOOL filename

• EXIT

SQL*Plus File Commands

SQL statements communicate with the Oracle server. SQL*Plus commands control the environment, 
format query results, and manage files. You can use the commands described in the following table:

Command Description 

SAV[E] filename [.ext] 
[REP[LACE]APP[END]] 

Saves current contents of SQL buffer to a file. Use APPEND 
to add to an existing file; use REPLACE to overwrite an 
existing file. The default extension is .sql. 

GET filename [.ext] 
  

Writes the contents of a previously saved file to the SQL 
buffer. The default extension for the file name is .sql. 

STA[RT] filename [.ext] Runs a previously saved command file 

@ filename    Runs a previously saved command file (same as START) 

ED[IT]    
 

Invokes the editor and saves the buffer contents to a file 
named afiedt.buf 

ED[IT] [filename[.ext]] Invokes the editor to edit the contents of a saved file 
SPO[OL] [filename[.ext]| 
OFF|OUT]  

Stores query results in a file. OFF closes the spool file. OUT 
closes the spool file and sends the file results to the printer. 

EXIT     Quits SQL*Plus 
 

 



Oracle Database 11g: SQL Fundamentals I  D - 14

Copyright © 2009, Oracle. All rights reserved.

Using the SAVE, START Commands

LIST
1  SELECT last_name, manager_id, department_id
2* FROM employees

SAVE my_query
Created file my_query

START my_query

LAST_NAME                 MANAGER_ID DEPARTMENT_ID
------------------------- ---------- -------------
King                                            90
Kochhar                          100            90
...
107 rows selected.

Using the SAVE, START, and EDIT Commands

SAVE

Use the SAVE command to store the current contents of the buffer in a file. In this way, you can store 
frequently used scripts for use in the future.

START

Use the START command to run a script in SQL*Plus. You can also, alternatively, use the symbol @
to run a script.

@my_query



Oracle Database 11g: SQL Fundamentals I  D - 15

Copyright © 2009, Oracle. All rights reserved.

SERVEROUTPUT Command

• Use the SET SERVEROUT[PUT] command  to control 
whether to display the output of stored procedures or 
PL/SQL blocks in SQL*Plus. 

• The DBMS_OUTPUT line length limit is increased from 255 
bytes to 32767 bytes.

• The default size is now unlimited.
• Resources are not preallocated when SERVEROUTPUT is 

set.
• Because there is no performance penalty, use UNLIMITED

unless you want to conserve physical memory.

SET SERVEROUT[PUT] {ON | OFF} [SIZE {n | UNL[IMITED]}] 
[FOR[MAT] {WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED]}]

SERVEROUTPUT Command 

Most of the PL/SQL programs perform input and output through SQL statements, to store data in 
database tables or query those tables. All other PL/SQL input/output is done through APIs that 
interact with other programs. For example, the DBMS_OUTPUT package has procedures, such as 
PUT_LINE. To see the result outside of PL/SQL requires another program, such as SQL*Plus, to 
read and display the data passed to DBMS_OUTPUT.

SQL*Plus does not display DBMS_OUTPUT data unless you first issue the SQL*Plus command SET 
SERVEROUTPUT ON as follows:

SET SERVEROUTPUT ON

Note 
• SIZE sets the number of bytes of the output that can be buffered within the Oracle Database 

server. The default is UNLIMITED. n cannot be less than 2000 or greater than 1,000,000. 
• For additional information about SERVEROUTPUT, see Oracle Database PL/SQL User's Guide 

and Reference 11g.



Oracle Database 11g: SQL Fundamentals I  D - 16

Copyright © 2009, Oracle. All rights reserved.

Using the SQL*Plus SPOOL Command

SPO[OL] [file_name[.ext] [CRE[ATE] | REP[LACE] | 
APP[END]] | OFF | OUT]

Stops spooling and sends the file to your computer’s 
standard (default) printer

OUT

Stops spoolingOFF

Spools output to the specified file namefile_name[.ext]

APP[END]

REP[LACE]

CRE[ATE]

Option

Creates a new file with the name specified

Adds the contents of the buffer to the end of the file 
you specify

Replaces the contents of an existing file. If the file 
does not exist, REPLACE creates the file.

Description

Using the SQL*Plus SPOOL Command

The SPOOL command stores query results in a file or optionally sends the file to a printer. The 
SPOOL command has been enhanced. You can now append to, or replace an existing file, where 
previously you could only use SPOOL to create (and replace) a file. REPLACE is the default. 

To spool output generated by commands in a script without displaying the output on the screen, use 
SET TERMOUT OFF. SET TERMOUT OFF does not affect output from commands that run 
interactively.

You must use quotes around file names containing white space. To create a valid HTML file using 
SPOOL APPEND commands, you must use PROMPT or a similar command to create the HTML 
page header and footer. The SPOOL APPEND command does not parse HTML tags. SET 
SQLPLUSCOMPAT[IBILITY] to 9.2 or earlier to disable the CREATE, APPEND and SAVE
parameters. 



Oracle Database 11g: SQL Fundamentals I  D - 17

Copyright © 2009, Oracle. All rights reserved.

Using the AUTOTRACE Command

• It displays a report after the successful execution of SQL 
DML statements such as SELECT, INSERT, UPDATE, or 
DELETE.

• The report can now include execution statistics and the 
query execution path.

SET AUTOT[RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]] 
[STAT[ISTICS]]

SET AUTOTRACE ON
-- The AUTOTRACE report includes both the optimizer
-- execution path and the SQL statement execution 
-- statistics

Using the AUTOTRACE Command

EXPLAIN shows the query execution path by performing an EXPLAIN PLAN. STATISTICS
displays SQL statement statistics. The formatting of your AUTOTRACE report may vary depending 
on the version of the server to which you are connected and the configuration of the server. The 
DBMS_XPLAN package provides an easy way to display the output of the EXPLAIN PLAN
command in several predefined formats.

Note 
• For additional information about the package and subprograms, refer to Oracle Database 

PL/SQL Packages and Types Reference 11g. 
• For additional information about the EXPLAIN PLAN, refer to Oracle Database SQL Reference 

11g.
• For additional information about Execution Plans and the statistics, refer to Oracle Database 

Performance Tuning Guide 11g.



Oracle Database 11g: SQL Fundamentals I  D - 18

Copyright © 2009, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL*Plus  
as an environment to do the following:

• Execute SQL statements

• Edit SQL statements

• Format the output

• Interact with script files

Summary

SQL*Plus is an execution environment that you can use to send SQL commands to the database 
server and to edit and save SQL commands. You can execute commands from the SQL prompt or 
from a script file.



Copyright © 2009, Oracle. All rights reserved.

Using JDeveloper



Oracle Database 11g: SQL Fundamentals I E - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the 
following:

• List the key features of Oracle JDeveloper

• Create a database connection in JDeveloper

• Manage database objects in JDeveloper

• Use JDeveloper to execute SQL Commands

• Create and run PL/SQL Program Units

Objectives

In this appendix, you are introduced to JDeveloper. You learn how to use JDeveloper for your 
database development tasks. 



Oracle Database 11g: SQL Fundamentals I E - 3

Copyright © 2009, Oracle. All rights reserved.

Oracle JDeveloper

Oracle JDeveloper

Oracle JDeveloper is an integrated development environment (IDE) for developing and 
deploying Java applications and Web services. It supports every stage of the software 
development life cycle (SDLC) from modeling to deploying. It has the features to use the latest 
industry standards for Java, XML, and SQL while developing an application. 

Oracle JDeveloper 11g initiates a new approach to J2EE development with features that enable 
visual and declarative development. This innovative approach makes J2EE development simple 
and efficient.



Oracle Database 11g: SQL Fundamentals I E - 4

Copyright © 2009, Oracle. All rights reserved.

Database Navigator

Database Navigator

Using Oracle JDeveloper, you can store the information necessary to connect to a database in an 
object called “connection.” A connection is stored as part of the IDE settings, and can be 
exported and imported for easy sharing among groups of users. A connection serves several 
purposes from browsing the database and building applications, all the way through to 
deployment.



Oracle Database 11g: SQL Fundamentals I E - 5

Copyright © 2009, Oracle. All rights reserved.

Creating Connection

Click the New Connection icon in 
the Database Navigator. 

In the Create Database 
Connection window, enter the 

Username, Password, and the 
SID.  

Click Test Connection.

Click OK

1

2

3

4

Creating Connection

A connection is an object that specifies the necessary information for connecting to a specific 
database as a specific user of that database. You can create and test connections for multiple 
databases and for multiple schemas.

To create a database connection, perform the following steps:
1. Click the New Connection icon in the Database Navigator.
2. In the Create Database Connection window, enter the connection name. Enter the 

username and password of the schema that you want to connect to. Enter the SID of the 
Database you want to connect.

3. Click Test to ensure that the connection has been set correctly.
4. Click OK.



Oracle Database 11g: SQL Fundamentals I E - 6

Copyright © 2009, Oracle. All rights reserved.

Browsing Database Objects

Use the Database Navigator to:

• Browse through many objects in a database schema

• Review the definitions of objects at a glance

Browsing Database Objects

After you create a database connection, you can use the Database Navigator to browse through 
many objects in a database schema including Tables, Views, Indexes, Packages, Procedures, 
Triggers, and Types.

You can see the definition of the objects broken into tabs of information that is pulled out of the 
data dictionary. For example, if you select a table in the Navigator, the details about columns, 
constraints, grants, statistics, triggers, and so on are displayed on an easy-to-read Database 
Navigator.



Oracle Database 11g: SQL Fundamentals I E - 7

Copyright © 2009, Oracle. All rights reserved.

Executing SQL Statements

1

2

3

Executing SQL Statements

To execute a SQL statement, perform the following steps:

1. Click the Open SQL Worksheet icon.

2. Select the connection.

3. Execute the SQL command by clicking:
1. The Execute statement button or by pressing F9. The output is as follows: 

2. The Run Script button or by pressing F5. The output is as follows: 



Oracle Database 11g: SQL Fundamentals I E - 8

Copyright © 2009, Oracle. All rights reserved.

Creating Program Units

Skeleton of the function

1

2

3

Creating Program Units

To create a PL/SQL program unit, perform the following steps: 
1. Select View > Database Navigator. Select and expand a database connection. Right-click a 

folder corresponding to the object type (Procedures, Packages, Functions). Choose “New 
[Procedures|Packages|Functions].” 

2. Enter a valid name for the function, package, or procedure and click OK. 
3. A skeleton definition is created and opened in the Code Editor. You can then edit the 

subprogram to suit your need.



Oracle Database 11g: SQL Fundamentals I E - 9

Copyright © 2009, Oracle. All rights reserved.

Compiling

Compilation with errors

Compilation without errors

Compiling

After editing the skeleton definition, you need to compile the program unit. Right-click the 
PL/SQL object that you need to compile in the Connection Navigator, and then select Compile. 
Alternatively, you can also press [Ctrl] + [Shift] + [F9] to compile.



Oracle Database 11g: SQL Fundamentals I E - 10

Copyright © 2009, Oracle. All rights reserved.

Running a Program Unit

Running a Program Unit

To execute the program unit, right-click the object and click Run. The Run PL/SQL dialog box 
appears. You may need to change the NULL values with reasonable values that are passed into 
the program unit. After you change the values, click OK. The output is displayed in the 
Message-Log window.



Oracle Database 11g: SQL Fundamentals I E - 11

Copyright © 2009, Oracle. All rights reserved.

Dropping a Program Unit 

1

2

Dropping a Program Unit

To drop a program unit, right-click the object and select Drop. The Drop Confirmation dialog 
box appears; click Apply. The object is dropped from the database. 



Oracle Database 11g: SQL Fundamentals I E - 12

Copyright © 2009, Oracle. All rights reserved.

Structure Window

Structure Window

The Structure window offers a structural view of the data in the document currently selected in 
the active window of those windows that participate in providing structure: the navigators, the 
editors and viewers, and the Property Inspector. 

Click View > Structure window to view the Structure window.

In the Structure window, you can view the document data in a variety of ways. The structures 
available for display are based upon document type. For a Java file, you can view code structure, 
UI structure, or UI model data. For an XML file, you can view XML structure, design structure, 
or UI model data. 

The Structure window is dynamic, tracking always the current selection of the active window 
(unless you freeze the window’s contents on a particular view), as is pertinent to the currently 
active editor. When the current selection is a node in the navigator, the default editor is assumed. 
To change the view on the structure for the current selection, click a different structure tab.



Oracle Database 11g: SQL Fundamentals I E - 13

Copyright © 2009, Oracle. All rights reserved.

Editor Window

Editor Window

Double-clicking the name of a program unit opens it in the Editor window. You can view your 
project files all in one single editor window, you can open multiple views of the same file, or 
you can open multiple views of different files. 

The tabs at the top of the editor window are the document tabs. Clicking a document tab gives 
that file focus, bringing it to the foreground of the window in the current editor. 

The tabs at the bottom of the editor window for a given file are the editor tabs. Selecting an 
editor tab opens the file in that editor.



Oracle Database 11g: SQL Fundamentals I E - 14

Copyright © 2009, Oracle. All rights reserved.

Application Navigator

Application Navigator

The Applications - Navigator gives you a logical view of your application and the data it 
contains. The Applications - Navigator provides an infrastructure that the different extensions 
can plug in to and use to organize their data and menus in a consistent, abstract manner. While 
the Applications - Navigator can contain individual files (such as Java source files), it is 
designed to consolidate complex data. Complex data types such as entity objects, UML 
diagrams, EJB, or Web services appear in this navigator as single nodes. The raw files that make 
up these abstract nodes appear in the Structure window.



Oracle Database 11g: SQL Fundamentals I E - 15

Copyright © 2009, Oracle. All rights reserved.

Deploying Java Stored Procedures

Before deploying Java stored procedures, perform the following 
steps:

1. Create a database connection.

2. Create a deployment profile.

3. Deploy the objects.

1 2 3

Deploying Java Stored Procedures

Create a deployment profile for Java stored procedures, and then deploy the classes and, 
optionally, any public static methods in JDeveloper using the settings in the profile. 

Deploying to the database uses the information provided in the Deployment Profile Wizard and 
two Oracle Database utilities: 
• loadjava loads the Java class containing the stored procedures to an Oracle database.
• publish generates the PL/SQL call–specific wrappers for the loaded public static 

methods. Publishing enables the Java methods to be called as PL/SQL functions or 
procedures.



Oracle Database 11g: SQL Fundamentals I E - 16

Copyright © 2009, Oracle. All rights reserved.

Publishing Java to PL/SQL

1

2

Publishing Java to PL/SQL

The slide shows the Java code and illustrates how to publish the Java code in a PL/SQL 
procedure. 



Oracle Database 11g: SQL Fundamentals I E - 17

Copyright © 2009, Oracle. All rights reserved.

http://forums.oracle.com/forums/forum.jspa?forumID=8
3

Oracle JDeveloper 11g 
Discussion Forum 

http://www.oracle.com/technology/products/jdev/index.
html

Oracle JDeveloper Product 
Page

http://www.oracle.com/technology/obe/obe11jdev/11/in
dex.html

Oracle JDeveloper 11g 
Tutorials

http://www.oracle.com/technology/documentation/jdev.
html

Oracle JDeveloper 11g 
Product Documentation

Topic Website

How Can I Learn More About JDeveloper 11g?



Oracle Database 11g: SQL Fundamentals I E - 18

Copyright © 2009, Oracle. All rights reserved.

Summary

In this appendix, you should have learned to do the following:

• List the key features of Oracle JDeveloper

• Create a database connection in JDeveloper

• Manage database objects in JDeveloper

• Use JDeveloper to execute SQL Commands

• Create and run PL/SQL Program Units



Copyright © 2009, Oracle. All rights reserved.

Oracle Join Syntax



Oracle Database 11g: SQL Fundamentals I F - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the 
following:
• Write SELECT statements to access data from more than 

one table using equijoins and nonequijoins

• Join a table to itself by using a self-join

• View data that generally does not meet a join condition by 
using outer joins

• Generate a Cartesian product of all rows from two or more 
tables

Objectives

This lesson explains how to obtain data from more than one table. A join is used to view information 
from multiple tables. Therefore, you can join tables together to view information from more than one 
table.

Note: Information about joins is found in the section on “SQL Queries and Subqueries: Joins” in 
Oracle Database SQL Language Reference 11g, Release 1 (11.1).



Oracle Database 11g: SQL Fundamentals I F - 3

Copyright © 2009, Oracle. All rights reserved.

Obtaining Data from Multiple Tables

EMPLOYEES DEPARTMENTS 

…

…

Obtaining Data from Multiple Tables

Sometimes you need to use data from more than one table. In the example in the slide, the report 
displays data from two separate tables:

• Employee IDs exist in the EMPLOYEES table.
• Department IDs exist in both the EMPLOYEES and DEPARTMENTS tables.
• Department names exist in the DEPARTMENTS table.

To produce the report, you need to link the EMPLOYEES and DEPARTMENTS tables, and access data 
from both of them.



Oracle Database 11g: SQL Fundamentals I F - 4

Copyright © 2009, Oracle. All rights reserved.

Cartesian Products

• A Cartesian product is formed when:
– A join condition is omitted

– A join condition is invalid

– All rows in the first table are joined to all rows in the second
table

• To avoid a Cartesian product, always include a valid join 
condition in a WHERE clause.

Cartesian Products

When a join condition is invalid or omitted completely, the result is a Cartesian product, in which all 
combinations of rows are displayed. In other words, all rows in the first table are joined to all rows in 
the second table.

A Cartesian product tends to generate a large number of rows and the result is rarely useful. 
Therefore, you should always include a valid join condition unless you have a specific need to 
combine all rows from all tables.

However, Cartesian products are useful for some tests when you need to generate a large number of 
rows to simulate a reasonable amount of data.



Oracle Database 11g: SQL Fundamentals I F - 5

Copyright © 2009, Oracle. All rights reserved.

Generating a Cartesian Product

Cartesian product: 
20 x 8 = 160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

…

…

…

Generating a Cartesian Product

A Cartesian product is generated when a join condition is omitted. The example in the slide displays 
the last name of the employee and the department name from the EMPLOYEES and DEPARTMENTS
tables, respectively. Because no join condition has been specified, all rows (20 rows) from the 
EMPLOYEES table are joined with all rows (8 rows) in the DEPARTMENTS table, thereby generating 
160 rows in the output.

SELECT last_name, department_name dept_name
FROM employees, departments;

…



Oracle Database 11g: SQL Fundamentals I F - 6

Copyright © 2009, Oracle. All rights reserved.

Types of Oracle-Proprietary Joins

• Equijoin

• Nonequijoin

• Outer join

• Self-join

Types of Joins

To join tables, you can use Oracle’s join syntax. 

Note: Before the Oracle9i release, the join syntax was proprietary. The SQL:1999–compliant join 
syntax does not offer any performance benefits over the Oracle-proprietary join syntax. 

Oracle does not have an equivalent syntax to support the FULL OUTER JOIN of the SQL:1999–
compliant join syntax.



Oracle Database 11g: SQL Fundamentals I F - 7

Copyright © 2009, Oracle. All rights reserved.

Joining Tables Using Oracle Syntax

Use a join to query data from more than one table:

• Write the join condition in the WHERE clause.

• Prefix the column name with the table name when the 
same column name appears in more than one table.

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column1 = table2.column2;

Joining Tables Using Oracle Syntax

When data from more than one table in the database is required, a join condition is used. Rows in one 
table can be joined to rows in another table according to common values that exist in the 
corresponding columns (that is, usually primary and foreign key columns). 

To display data from two or more related tables, write a simple join condition in the WHERE clause. 

In the syntax:

table1.column Denotes the table and column from which data is retrieved
table1.column1 = Is the condition that joins (or relates) the tables together
table2.column2

Guidelines

• When writing a SELECT statement that joins tables, precede the column name with the table 
name for clarity and to enhance database access.

• If the same column name appears in more than one table, the column name must be prefixed 
with the table name.

• To join n tables together, you need a minimum of n-1 join conditions. For example, to join four 
tables, a minimum of three joins is required. This rule may not apply if your table has a 
concatenated primary key, in which case more than one column is required to uniquely identify 
each row.



Oracle Database 11g: SQL Fundamentals I F - 8

Copyright © 2009, Oracle. All rights reserved.

Qualifying Ambiguous Column Names

• Use table prefixes to qualify column names that are in 
multiple tables.

• Use table prefixes to improve performance.

• Use table aliases, instead of full table name prefixes.

• Table aliases give a table a shorter name.
– Keeps SQL code smaller, uses less memory

• Use column aliases to distinguish columns that have 
identical names, but reside in different tables.

Qualifying Ambiguous Column Names

When joining two or more tables, you need to qualify the names of the columns with the table name 
to avoid ambiguity. Without the table prefixes, the DEPARTMENT_ID column in the SELECT list 
could be from either the DEPARTMENTS table or the EMPLOYEES table. Therefore, it is necessary 
to add the table prefix to execute your query. If there are no common column names between the two 
tables, there is no need to qualify the columns. However, using a table prefix improves performance, 
because you tell the Oracle server exactly where to find the columns. 

Qualifying column names with table names can be very time consuming, particularly if table names 
are lengthy. Therefore, you can use table aliases, instead of table names. Just as a column alias gives 
a column another name, a table alias gives a table another name. Table aliases help to keep SQL code 
smaller, thereby using less memory.

The table name is specified in full, followed by a space and then the table alias. For example, the 
EMPLOYEES table can be given an alias of e, and the DEPARTMENTS table an alias of d.

Guidelines

• Table aliases can be up to 30 characters in length, but shorter aliases are better than longer ones.
• If a table alias is used for a particular table name in the FROM clause, that table alias must be 

substituted for the table name throughout the SELECT statement.
• Table aliases should be meaningful.
• A table alias is valid only for the current SELECT statement.



Oracle Database 11g: SQL Fundamentals I F - 9

Copyright © 2009, Oracle. All rights reserved.

Equijoins

EMPLOYEES DEPARTMENTS 

Foreign key

Primary key

…

Equijoins

To determine an employee’s department name, you compare the value in the DEPARTMENT_ID
column in the EMPLOYEES table with the DEPARTMENT_ID values in the DEPARTMENTS table. 
The relationship between the EMPLOYEES and DEPARTMENTS tables is an equijoin; that is, values 
in the DEPARTMENT_ID column in both tables must be equal. Often, this type of join involves 
primary and foreign key complements.

Note: Equijoins are also called simple joins or inner joins.



Oracle Database 11g: SQL Fundamentals I F - 10

Copyright © 2009, Oracle. All rights reserved.

SELECT e.employee_id, e.last_name, e.department_id, 
d.department_id, d.location_id

FROM   employees e, departments d
WHERE  e.department_id = d.department_id;

Retrieving Records with Equijoins

…

Retrieving Records with Equijoins

In the example in the slide:
• The SELECT clause specifies the column names to retrieve:

- Employee last name, employee number, and department number, which are columns in the 
EMPLOYEES table

- Department number, department name, and location ID, which are columns in the 
DEPARTMENTS table

• The FROM clause specifies the two tables that the database must access:
- EMPLOYEES table
- DEPARTMENTS table

• The WHERE clause specifies how the tables are to be joined:
e.department_id = d.department_id

Because the DEPARTMENT_ID column is common to both tables, it must be prefixed with the table 
alias to avoid ambiguity. Other columns that are not present in both the tables need not be qualified 
by a table alias, but it is recommended for better performance.

Note: When you use the Execute Statement icon to run the query, SQL Developer suffixes a “_1” to 
differentiate between the two DEPARTMENT_IDs.



Oracle Database 11g: SQL Fundamentals I F - 11

Copyright © 2009, Oracle. All rights reserved.

SELECT d.department_id, d.department_name,
d.location_id, l.city

FROM   departments d, locations l
WHERE  d.location_id = l.location_id;

Retrieving Records with Equijoins: Example

Retrieving Records with Equijoins: Example

In the example in the slide, the LOCATIONS table is joined to the DEPARTMENTS table by the 
LOCATION_ID column, which is the only column of the same name in both the tables. Table aliases 
are used to qualify the columns and avoid ambiguity.



Oracle Database 11g: SQL Fundamentals I F - 12

Copyright © 2009, Oracle. All rights reserved.

Additional Search Conditions
Using the AND Operator 

SELECT  d.department_id, d.department_name, l.city
FROM    departments d, locations l
WHERE   d.location_id = l.location_id
AND d.department_id IN (20, 50);

Additional Search Conditions Using the AND Operator

In addition to the join, you may have criteria for your WHERE clause to restrict the rows under 
consideration for one or more tables in the join. The example in the slide limits the rows of output to 
those with a department ID equal to 20 or 50:

For example, to display employee Matos’ department number and department name, you need an 
additional condition in the WHERE clause.

SELECT e.last_name, e.department_id,
d.department_name

FROM   employees e, departments d
WHERE  e.department_id = d.department_id
AND    last_name = 'Matos';



Oracle Database 11g: SQL Fundamentals I F - 13

Copyright © 2009, Oracle. All rights reserved.

Joining More than Two Tables

To join n tables together, you need a minimum of n–1
join conditions. For example, to join three tables, a
minimum of two joins is required.

EMPLOYEES LOCATIONSDEPARTMENTS

…

Joining More than Two Tables

Sometimes you may need to join more than two tables. For example, to display the last name, the 
department name, and the city for each employee, you have to join the EMPLOYEES, 
DEPARTMENTS, and LOCATIONS tables.

SELECT e.last_name, d.department_name, l.city
FROM   employees e, departments d, locations l
WHERE  e.department_id = d.department_id
AND    d.location_id = l.location_id;

…



Oracle Database 11g: SQL Fundamentals I F - 14

Copyright © 2009, Oracle. All rights reserved.

Nonequijoins

EMPLOYEES JOB_GRADES

JOB_GRADES table defines LOWEST_SAL
and HIGHEST_SAL range of values for 
each GRADE_LEVEL. Therefore, the 
GRADE_LEVEL column can be used to 
assign grades to each employee.

…

Nonequijoins

A nonequijoin is a join condition containing something other than an equality operator.

The relationship between the EMPLOYEES table and the JOB_GRADES table is an example of a 
nonequijoin. The SALARY column in the EMPLOYEES table ranges between the values in the 
LOWEST_SAL and HIGHEST_SAL columns of the JOB_GRADES table. Therefore, each employee 
can be graded based on the salary. The relationship is obtained using an operator other than the 
equality operator (=).



Oracle Database 11g: SQL Fundamentals I F - 15

Copyright © 2009, Oracle. All rights reserved.

SELECT e.last_name, e.salary, j.grade_level
FROM   employees e, job_grades j
WHERE  e.salary 

BETWEEN j.lowest_sal AND j.highest_sal;

Retrieving Records with Nonequijoins

…

Retrieving Records with Nonequijoins 

The example in the slide creates a nonequijoin to evaluate an employee’s salary grade. The salary 
must be between any pair of the low and high salary ranges. 
It is important to note that all employees appear exactly once when this query is executed. No 
employee is repeated in the list. There are two reasons for this:

• None of the rows in the job grade table contain grades that overlap. That is, the salary value for 
an employee can lie only between the low salary and high salary values of one of the rows in the 
salary grade table. 

• All of the employees’ salaries lie within the limits that are provided by the job grade table. That 
is, no employee earns less than the lowest value contained in the LOWEST_SAL column or more 
than the highest value contained in the HIGHEST_SAL column.

Note: Other conditions (such as <= and >=) can be used, but BETWEEN is the simplest. Remember 
to specify the low value first and the high value last when using the BETWEEN condition. The Oracle 
server translates the BETWEEN condition to a pair of AND conditions. Therefore, using BETWEEN has 
no performance benefits, but should be used only for logical simplicity.
Table aliases have been specified in the example in the slide for performance reasons, not because of 
possible ambiguity.



Oracle Database 11g: SQL Fundamentals I F - 16

Copyright © 2009, Oracle. All rights reserved.

Returning Records with No Direct Match 
with Outer Joins

EMPLOYEESDEPARTMENTS

There are no employees in 
department 190. 

…

Returning Records with No Direct Match with Outer Joins

If a row does not satisfy a join condition, the row does not appear in the query result. For example, in 
the equijoin condition of the EMPLOYEES and DEPARTMENTS tables, department ID 190 does not 
appear because there are no employees with that department ID recorded in the EMPLOYEES table. 
Similarly, there is an employee whose DEPARTMENT_ID is set to NULL, so this row will also not 
appear in the query result of an equijoin. To return the department record that does not have any 
employees, or to return the employee record that does not belong to any department, you can use the 
outer join.



Oracle Database 11g: SQL Fundamentals I F - 17

Copyright © 2009, Oracle. All rights reserved.

Outer Joins: Syntax

• You use an outer join to see rows that do not meet the join 
condition.

• The outer join operator is the plus sign (+).

SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column(+) = table2.column;

SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column = table2.column(+);

Outer Joins: Syntax

Missing rows can be returned if an outer join operator is used in the join condition. The operator is a 
plus sign enclosed with parentheses (+), and is placed on the “side” of the join that is deficient in the 
information. This operator has the effect of creating one or more null rows, to which one or more 
rows from the nondeficient table can be joined.

In the syntax:

table1.column = Is the condition that joins (or relates) the tables together

table2.column (+) Is the outer join symbol, which can be placed on either side of the 
WHERE clause condition, but not on both sides (Place the outer join 
symbol following the name of the column in the table without the
matching rows.)



Oracle Database 11g: SQL Fundamentals I F - 18

Copyright © 2009, Oracle. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name
FROM   employees e, departments d
WHERE  e.department_id(+) = d.department_id ;

Using Outer Joins

…

Using Outer Joins

The example in the slide displays employee last names, department IDs, and department names. The 
Contracting department does not have any employees. The empty value is shown in the output.

Outer Join Restrictions

• The outer join operator can appear only on one side of the expression—the side in which the 
information is missing. It returns those rows, from one table, that have no direct match in the 
other table.

• A condition involving an outer join cannot use the IN operator or be linked to another condition 
by the OR operator.

Note: Oracle’s join syntax does not have an equivalent for the FULL OUTER JOIN of the 
SQL:1999– compliant join syntax.



Oracle Database 11g: SQL Fundamentals I F - 19

Copyright © 2009, Oracle. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name
FROM   employees e, departments d
WHERE  e.department_id = d.department_id(+) ;

Outer Join: Another Example

…

Outer Join: Another Example

The query in the example in the slide retrieves all rows in the EMPLOYEES table, even if there is no 
match in the DEPARTMENTS table.



Oracle Database 11g: SQL Fundamentals I F - 20

Copyright © 2009, Oracle. All rights reserved.

Joining a Table to Itself

MANAGER_ID in the WORKER table is equal to 
EMPLOYEE_ID in the MANAGER table.

EMPLOYEES(WORKER) EMPLOYEES(MANAGER)

… …

Joining a Table to Itself

Sometimes you need to join a table to itself. To find the name of each employee’s manager, you need 
to join the EMPLOYEES table to itself, or perform a self-join. For example, to find the name of 
Lorentz’s manager, you need to: 

• Find Lorentz in the EMPLOYEES table by looking at the LAST_NAME column 
• Find the manager number for Lorentz by looking at the MANAGER_ID column. Lorentz’s 

manager number is 103. 
• Find the name of the manager with EMPLOYEE_ID 103 by looking at the LAST_NAME column. 

Hunold’s employee number is 103, so Hunold is Lorentz’s manager.

In this process, you look in the table twice. The first time you look in the table to find Lorentz in the 
LAST_NAME column and the MANAGER_ID value of 103. The second time you look in the 
EMPLOYEE_ID column to find 103 and the LAST_NAME column to find Hunold.



Oracle Database 11g: SQL Fundamentals I F - 21

Copyright © 2009, Oracle. All rights reserved.

Self-Join: Example

SELECT worker.last_name || ' works for ' 

|| manager.last_name

FROM   employees worker, employees manager

WHERE  worker.manager_id = manager.employee_id ;

…

Self-Join: Example

The example in the slide joins the EMPLOYEES table to itself. To simulate two tables in the FROM
clause, there are two aliases, namely worker and manager, for the same table, EMPLOYEES. 

In this example, the WHERE clause contains the join that means “where a worker’s manager number 
matches the employee number for the manager.”



Oracle Database 11g: SQL Fundamentals I F - 22

Copyright © 2009, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use joins to 
display data from multiple tables by using Oracle-proprietary 
syntax.

Summary

There are multiple ways to join tables. 

Types of Joins
• Equijoins
• Nonequijoins
• Outer joins
• Self-joins

Cartesian Products

A Cartesian product results in a display of all combinations of rows. This is done by omitting the 
WHERE clause.

Table Aliases

• Table aliases speed up database access.
• Table aliases can help to keep SQL code smaller by conserving memory.



Oracle Database 11g: SQL Fundamentals I F - 23

Copyright © 2009, Oracle. All rights reserved.

Practice F: Overview

This practice covers the following topics:

• Joining tables by using an equijoin

• Performing outer and self-joins

• Adding conditions

Practice F: Overview

This practice is intended to give you practical experience in extracting data from more than one table 
using the Oracle join syntax.





 

Appendix AP
Additional Practices and Solutions

 
 
 



 

Oracle Database 11g: SQL Fundamentals I   AP - 2 

Table of Contents 
 
Additional Practices ............................................................................................................ 3 

Practice 1-1 ..................................................................................................................... 4 
Practice Solutions 1-1 ................................................................................................... 12 

Case Study ........................................................................................................................ 17 
Practice 2-1 ................................................................................................................... 19 
Practice Solutions 2-1 ................................................................................................... 27 

 

 



 

Oracle Database 11g: SQL Fundamentals I   AP - 3 

Additional Practices 



 

Oracle Database 11g: SQL Fundamentals I   AP - 4 

Practice 1-1 
These exercises can be used for extra practice after you have discussed the following 
topics: basic SQL SELECT statement, basic SQL Developer commands, and SQL 
functions.  

1) The HR department needs to find data for all the clerks who were hired after the year 
1997.     

 

2) The HR department needs a report of employees who earn commission. Show the last 
name, job, salary, and commission of those employees. Sort the data by salary in 
descending order. 

 

3) For budgeting purposes, the HR department needs a report on projected raises. The 
report should display those employees who have no commission, but who have a 10% 
raise in salary (round off the salaries). 

 

 

 

 

 



Practice 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 5 

4) Create a report of employees and their length of employment. Show the last names of 
all the employees together with the number of years and the number of completed 
months that they have been employed. Order the report by the length of their 
employment. The employee who has been employed the longest should appear at the 
top of the list. 

 

5)  Show those employees who have a last name starting with the letters “J,” “K,” “L,” 
or “M.”  

 

 

 

 

 

 

 



Practice 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 6 

6) Create a report that displays all employees, and indicate with the words Yes or No 
whether they receive a commission. Use the DECODE expression in your query.  

 

 

These exercises can be used for extra practice after you have discussed the following 
topics: basic SQL SELECT statement, basic SQL Developer commands, SQL functions, 
joins, and group functions. 

7) Create a report that displays the department name, location ID, last name, job title, 
and salary of those employees who work in a specific location. Prompt the user for 
the location. For example, if the user enters 1800, these are the results: 

 

8) Find the number of employees who have a last name that ends with the letter “n.” 
Create two possible solutions.  

 

 

 

 



Practice 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 7 

9) Create a report that shows the name, location, and number of employees for each 
department. Make sure that the report also includes departments without employees. 

 

10) The HR department needs to find the job titles in departments 10 and 20. Create a 
report to display the job IDs for those departments. 

 

11) Create a report that displays the jobs that are found in the Administration and 
Executive departments. Also display the number of employees for these jobs. Show 
the job with the highest number of employees first. 

 

 

These exercises can be used for extra practice after you have discussed the following 
topics: basic SQL SELECT statements, basic SQL Developer commands, SQL functions, 
joins, group functions, and subqueries. 

12) Show all the employees who were hired in the first half of the month (before the 16th 
of the month). 

 

 



Practice 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 8 

13) Create a report that displays the following for all employees: last name, salary, and 
salary expressed in terms of thousands of dollars.  

 

14) Show all the employees who have managers with a salary higher than $15,000. Show 
the following data: employee name, manager name, manager salary, and salary grade 
of the manager. 

 

 

 

 

 

 



Practice 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 9 

15) Show the department number, name, number of employees, and average salary of all 
the departments, together with the names, salaries, and jobs of the employees working 
in each department. 

 

16) Create a report to display the department number and lowest salary of the department 
with the highest average salary. 

 

17) Create a report that displays departments where no sales representatives work. 
Include the department number, department name, manager ID, and the location in 
the output. 

 

 

 

 

 

 



Practice 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 10 

18)  Create the following statistical reports for the HR department: Include the 
department number, department name, and the number of employees working in each 
department that: 

a) Employs fewer than three employees: 

 

b) Has the highest number of employees: 

 

c) Has the lowest number of employees: 

 

19) Create a report that displays the employee number, last name, salary, department 
number, and the average salary in their department for all employees. 

 

 

 

 



Practice 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 11 

20) Show all the employees who were hired on the day of the week on which the highest 
number of employees were hired. 

 

21) Create an anniversary overview based on the hire date of the employees. Sort the 
anniversaries in ascending order. 

 

 

 



 

Oracle Database 11g: SQL Fundamentals I   AP - 12 

Practice Solutions 1-1 
These exercises can be used for extra practice after you have discussed the following 
topics: basic SQL SELECT statement, basic SQL Developer commands, and SQL 
functions. 

1) The HR department needs to find data for all of the clerks who were hired after the 
year 1997. 

SELECT * 
FROM   employees 
WHERE  job_id = 'ST_CLERK' 
AND hire_date > '31-DEC-1997'; 

2) The HR department needs a report of employees who earn commission. Show the last 
name, job, salary, and commission of those employees. Sort the data by salary in 
descending order. 

SELECT last_name, job_id, salary, commission_pct 
FROM   employees 
WHERE  commission_pct IS NOT NULL 
ORDER BY salary DESC; 

3) For budgeting purposes, the HR department needs a report on projected raises. The 
report should display those employees who do not get a commission but who have a 
10% raise in salary (round off the salaries). 

SELECT 'The salary of '||last_name||' after a 10% raise is '  
          || ROUND(salary*1.10) "New salary" 
FROM   employees 
WHERE  commission_pct IS NULL; 

4) Create a report of employees and their duration of employment. Show the last names 
of all employees together with the number of years and the number of completed 
months that they have been employed. Order the report by the duration of their 
employment. The employee who has been employed the longest should appear at the 
top of the list. 

SELECT last_name,  
       TRUNC(MONTHS_BETWEEN(SYSDATE, hire_date) / 12) YEARS,  
       TRUNC(MOD(MONTHS_BETWEEN(SYSDATE, hire_date), 12)) 
 MONTHS 
FROM employees 
ORDER BY years DESC, MONTHS desc; 

 

5) Show those employees who have a last name starting with the letters “J,” “K,” “L,” or 
“M.” 

SELECT last_name   
FROM   employees 
WHERE  SUBSTR(last_name, 1,1) IN ('J', 'K', 'L', 'M'); 



Practice Solutions 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 13 

6) Create a report that displays all employees, and indicate with the words Yes or No 
whether they receive a commission. Use the DECODE expression in your query. 

SELECT last_name, salary, 
       decode(commission_pct, NULL, 'No', 'Yes') commission 
FROM   employees; 

 
 
These exercises can be used for extra practice after you have discussed the following 
topics: basic SQL SELECT statement, basic SQL Developer commands, SQL functions, 
joins, and group functions. 

7) Create a report that displays the department name, location ID, name, job title, and 
salary of those employees who work in a specific location. Prompt the user for the 
location.  

a) Enter 1800 for location_id when prompted. 

SELECT d.department_name, d.location_id, e.last_name, 
e.job_id, e.salary 
FROM   employees e, departments d 
WHERE   e.department_id = d.department_id 
AND     d.location_id = &location_id; 

8) Find the number of employees who have a last name that ends with the letter “n.” 
Create two possible solutions. 

SELECT COUNT(*) 
FROM   employees 
WHERE  last_name LIKE '%n'; 
--or  
SELECT COUNT(*) 
FROM   employees  
WHERE  SUBSTR(last_name, -1) = 'n'; 

9) Create a report that shows the name, location, and number of employees for each 
department. Make sure that the report also includes departments without employees. 

SELECT d.department_id, d.department_name,  
       d.location_id,   COUNT(e.employee_id) 
FROM   employees e RIGHT OUTER JOIN  departments d 
ON     e.department_id = d.department_id 
GROUP BY d.department_id, d.department_name, d.location_id; 

10) The HR department needs to find the job titles in departments 10 and 20. Create a 
report to display the job IDs for those departments. 

SELECT DISTINCT job_id 
FROM   employees  
WHERE  department_id IN (10, 20); 



Practice Solutions 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 14 

11) Create a report that displays the jobs that are found in the Administration and 
Executive departments. Also display the number of employees for these jobs. Show 
the job with the highest number of employees first. 

SELECT e.job_id, count(e.job_id) FREQUENCY 
FROM    employees e JOIN departments d 
ON  e.department_id = d.department_id 
WHERE    d.department_name IN ('Administration', 'Executive') 
GROUP BY e.job_id 
ORDER BY FREQUENCY DESC; 

 
 
These exercises can be used for extra practice after you have discussed the following 
topics: basic SQL SELECT statements, basic SQL Developer commands, SQL functions, 
joins, group functions, and subqueries. 

12) Show all employees who were hired in the first half of the month (before the 16th of 
the month). 

SELECT last_name, hire_date 
FROM   employees 
WHERE  TO_CHAR(hire_date, 'DD') < 16;  

13) Create a report that displays the following for all employees: last name, salary, and 
salary expressed in terms of thousands of dollars. 

SELECT last_name, salary, TRUNC(salary, -3)/1000  Thousands 
FROM   employees; 

14) Show all employees who have managers with a salary higher than $15,000. Show the 
following data: employee name, manager name, manager salary, and salary grade of 
the manager. 

SELECT e.last_name, m.last_name manager, m.salary,  
j.grade_level 
FROM   employees e JOIN employees m  
ON     e.manager_id = m.employee_id 
JOIN   job_grades j 
ON     m.salary BETWEEN j.lowest_sal AND j.highest_sal 
AND    m.salary > 15000; 



Practice Solutions 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 15 

15) Show the department number, name, number of employees, and average salary of all 
departments, together with the names, salaries, and jobs of the employees working in 
each department. 

SELECT  d.department_id, d.department_name,  
        count(e1.employee_id) employees, 
        NVL(TO_CHAR(AVG(e1.salary), '99999.99'), 'No average' 
) avg_sal, 
        e2.last_name, e2.salary, e2.job_id 
FROM    departments d RIGHT OUTER JOIN employees e1 
ON      d.department_id = e1.department_id 
RIGHT OUTER JOIN  employees e2 
ON    d.department_id = e2.department_id 
GROUP BY d.department_id, d.department_name, e2.last_name, 
e2.salary, 
         e2.job_id 
ORDER BY d.department_id, employees; 

 

16) Create a report to display the department number and lowest salary of the department 
with the highest average salary. 

SELECT department_id, MIN(salary) 
FROM   employees 
GROUP BY department_id 
HAVING AVG(salary) = (SELECT MAX(AVG(salary)) 
                      FROM   employees 
                      GROUP BY department_id); 

17) Create a report that displays the departments where no sales representatives work. 
Include the department number, department name, and location in the output. 

SELECT * 
FROM   departments 
WHERE  department_id NOT IN(SELECT department_id 
                            FROM employees 
                            WHERE job_id = 'SA_REP' 
                            AND department_id IS NOT NULL); 

18) Create the following statistical reports for the HR department: Include the department 
number, department name, and the number of employees working in each department 
that: 

a) Employs fewer than three employees: 

SELECT d.department_id, d.department_name, COUNT(*) 
FROM   departments d JOIN employees e 
ON     d.department_id = e.department_id 
GROUP BY d.department_id, d.department_name  
HAVING COUNT(*) < 3; 



Practice Solutions 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 16 

b) Has the highest number of employees: 

SELECT d.department_id, d.department_name, COUNT(*) 
FROM   departments d JOIN employees e 
ON     d.department_id = e.department_id 
GROUP BY d.department_id, d.department_name 
HAVING COUNT(*) = (SELECT MAX(COUNT(*)) 
                   FROM   employees 
                   GROUP BY department_id); 

 

c) Has the lowest number of employees:  

SELECT d.department_id, d.department_name, COUNT(*) 
FROM   departments d JOIN employees e 
ON     d.department_id = e.department_id 
GROUP BY d.department_id, d.department_name 
HAVING COUNT(*) = (SELECT MIN(COUNT(*)) 
                   FROM   employees 
                   GROUP BY department_id); 

19) Create a report that displays the employee number, last name, salary, department 
number, and the average salary in their department for all employees. 

SELECT e.employee_id, e.last_name, e.department_id, e.salary, 
AVG(s.salary) 
FROM   employees e JOIN employees s 
ON     e.department_id = s.department_id 
GROUP BY e.employee_id, e.last_name, e.department_id, 
e.salary; 

20) Show all employees who were hired on the day of the week on which the highest 
number of employees were hired. 

SELECT last_name, TO_CHAR(hire_date, 'DAY') day 
FROM   employees 
WHERE  TO_CHAR(hire_date, 'Day') =  
       (SELECT TO_CHAR(hire_date, 'Day') 
        FROM   employees 
        GROUP BY TO_CHAR(hire_date, 'Day') 
        HAVING COUNT(*) = (SELECT MAX(COUNT(*)) 
                           FROM   employees 
                           GROUP BY TO_CHAR(hire_date, 
'Day'))); 

21) Create an anniversary overview based on the hire date of the employees. Sort the 
anniversaries in ascending order. 

SELECT last_name, TO_CHAR(hire_date, 'Month DD') BIRTHDAY  
FROM   employees 
ORDER BY TO_CHAR(hire_date, 'DDD'); 

 



 

Oracle Database 11g: SQL Fundamentals I   AP - 17 

Case Study 
In this case study, you build a set of database tables for a video application. After you 
create the tables, you insert, update, and delete records in a video store database and 
generate a report. The database contains only the essential tables. 
The following is a diagram of the entities and attributes for the video application: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: If you want to build the tables, you can execute the commands in the 
buildtab.sql script in SQL Developer. If you want to drop the tables, you can execute 
the commands in the dropvid.sql script in SQL Developer. Then you can execute the 
commands in the buildvid.sql script in SQL Developer to create and populate the 
tables.  
All the three SQL scripts are present in the /home/oracle/labs/sql1/labs 
folder. 

• If you use the buildtab.sql script to build the tables, start with step 4. 
 
 

TITLE 
#* id 
  * title 
  * description 
 o rating 
 o category 
 o release date 

TITLE_COPY 
#* id 
  * status 

RENTAL 
#* book date 
 o act ret date 
 o exp ret date 

  MEMBER 
#* id 
  * last name 
 o first name 
 o address 
 o city 
 o phone 
 * join date 

RESERVATION 
#* res date 

for

the subject
of

available as

a copy

the subject of

made against
responsible
for 

created
for

responsible
for

set up for 



Practice Solutions 1-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 18 

• If you use the dropvid.sql script to remove the video tables, start with step 1. 
• If you use the buildvid.sql script to build and populate the tables, start with 

step 6(b).



 

Oracle Database 11g: SQL Fundamentals I   AP - 19 

Practice 2-1 
1) Create the tables based on the following table instance charts. Choose the appropriate 

data types and be sure to add integrity constraints. 

a) Table name: MEMBER 

 

b) Table name: TITLE 

Column_
Name 

MEMBER_ 
ID 

LAST_ 
NAME 

FIRST_NAME ADDRESS CITY PHONE JOIN
_ 
DATE 

Key 
Type 

PK       

Null/ 
Unique 

NN,U NN     NN 

Default 
Value 

      System 
Date 

Data 
Type 

NUMBER VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 DATE 

Length 10 25 25 100 30 15  

 
 

Column_
Name 

TITLE_ID TITLE DESCRIPTION RATING CATEGORY RELEASE_ 
DATE 

Key 
Type 

PK      

Null/ 
Unique 

NN,U NN NN    

Check    G, PG, R, 
NC17, NR 

DRAMA, 
COMEDY, 
ACTION, 
CHILD, 
SCIFI, 
DOCUMEN
TARY 

 

Data Type NUMBER VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 DATE 

Length 10 60 400 4 20  

 
 



Practice 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 20 

 

c) Table name: TITLE_COPY 

d) Table name: RENTAL 

Column 
Name 

COPY_ID TITLE_ID STATUS 

Key 
Type 

PK PK,FK  

Null/ 
Unique 

NN,U NN,U NN 

Check   AVAILABLE, 
DESTROYED, 
RENTED, 
RESERVED 

FK Ref 
Table 

 TITLE  

FK Ref 
Col 

 TITLE_ID  

Data 
Type 

NUMBER NUMBER VARCHAR2 

Length 10 10 15 

 
 

Column 
Name 

BOOK_ 
DATE 

MEMBER_ 
ID 

COPY_ 
ID 

ACT_RET_
DATE 

EXP_RET_ 
DATE 

TITLE_ 
ID 

Key 
Type 

PK PK,FK1 PK,FK2   PK,FK2 

Default 
Value 

System 
Date 

   System Date 
+ 2 days 

 

FK Ref 
Table 

 MEMBER TITLE_
COPY 

  TITLE_ 
COPY 

FK Ref 
Col 

 MEMBER_I
D 

COPY_ 
ID 

  TITLE_ID 

Data 
Type 

DATE NUMBER NUMBER DATE DATE NUMBER 

Length  10 10   10 

 
 



Practice 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 21 

e) Table name: RESERVATION 

2) Verify that the tables were created properly by checking in the Connections Navigator 
in SQL Developer. 

 

 

 

 

 

Column 
Name 

RES_ 
DATE 

MEMBER_ 
ID 

TITLE_ 
ID 

Key 
Type 

PK PK,FK1 PK,FK2 

Null/ 
Unique 

NN,U NN,U NN 

FK Ref 
Table 

 MEMBER TITLE 

FK Ref 
Column 

 MEMBER_ID TITLE_ID 

Data Type DATE NUMBER NUMBER 

Length   10 10 

 
 



Practice 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 22 

3) Create sequences to uniquely identify each row in the MEMBER table and the TITLE 
table. 

a) Member number for the MEMBER table: Start with 101; do not allow caching of the 
values. Name the sequence MEMBER_ID_SEQ. 

b) Title number for the TITLE table: Start with 92; do not allow caching of the 
values. Name the sequence TITLE_ID_SEQ. 

c) Verify the existence of the sequences in the Connections Navigator in SQL 
Developer.  

 

4) Add data to the tables. Create a script for each set of data to be added. 

a) Add movie titles to the TITLE table. Write a script to enter the movie 
information. Save the statements in a script named lab_apcs_4a.sql. Use the 
sequences to uniquely identify each title. Enter the release dates in the DD-MON-
YYYY format. Remember that single quotation marks in a character field must be 
specially handled. Verify your additions. 



Practice 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 23 

 

Title Description Rating Category Release_date 
Willie and  
Christmas Too 

All of Willie’s friends 
make a Christmas list for 
Santa, but Willie has yet 
to add his own wish list. 

G CHILD 05-OCT-1995 

Alien Again Yet another installation of 
science fiction history. 
Can the heroine save the 
planet from the alien life 
form? 

R SCIFI 19-MAY-1995 

The Glob A meteor crashes near a 
small American town and 
unleashes carnivorous goo 
in this classic. 

NR SCIFI 12-AUG-1995 

My Day Off With a little luck and a lot 
of ingenuity, a teenager 
skips school for a day in 
New York. 

PG COMEDY 12-JUL-1995 

Miracles on Ice A six-year-old has doubts 
about Santa Claus, but she 
discovers that miracles 
really do exist. 

PG DRAMA 12-SEP-1995 

Soda Gang After discovering a cache 
of drugs, a young couple 
find themselves pitted 
against a vicious gang. 

NR ACTION 01-JUN-1995 

b) Add data to the MEMBER table. Save the insert statements in a script named 
lab_apcs_4b.sql. Execute commands in the script. Be sure to use the 
sequence to add the member numbers. 

First_ 
 Name 

 
Last_Name 

 
Address 

 
City 

 
Phone 

 
Join_Date 

Carmen Velasquez 283 King 
Street 

Seattle 206-899-
6666 

08-MAR-
1990 

LaDoris Ngao 5 Modrany Bratislava 586-355-
8882 

08-MAR-
1990 

Midori Nagayama 68 Via 
Centrale 

Sao Paolo 254-852-
5764 

17-JUN-
1991 

Mark Quick-to-See 6921 King 
Way 

Lagos 63-559-7777 07-APR-1990

Audry Ropeburn 86 Chu Street Hong Kong 41-559-87 18-JAN-
1991 

Molly Urguhart 3035 Laurier Quebec 418-542-
9988 

18-JAN-
1991 

 

 



Practice 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 24 

c) Add the following movie copies in the TITLE_COPY table: 

Note: Have the TITLE_ID numbers available for this exercise. 

Title Copy_Id Status Title Copy_Id 

Willie and 
Christmas Too 

1 AVAILABLE Willie and Christmas 
Too 

1 

Alien Again 1 AVAILABLE Alien Again 1 

 2 RENTED  2 

The Glob 1 AVAILABLE The Glob 1 

My Day Off 1 AVAILABLE My Day Off 1 

 2 AVAILABLE  2 

 3 RENTED  3 

Miracles on Ice 1 AVAILABLE Miracles on Ice 1 

Soda Gang 1 AVAILABLE Soda Gang 1 

d) Add the following rentals to the RENTAL table: 

Note: The title number may be different depending on the sequence number. 

Title_ Id Copy_ 
Id 

Member_Id  
Book_date 

 
Exp_Ret_Date 

92 1 101 3 days ago 1 day ago 

93  2 101 1 day ago 1 day from now 

95 3 102 2 days ago Today 

97 1 106 4 days ago 2 days ago 

 



Practice 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 25 

5) Create a view named TITLE_AVAIL to show the movie titles, the availability of each 
copy, and its expected return date if rented. Query all rows from the view. Order the 
results by title. 

Note: Your results may be different.  

 

6) Make changes to the data in the tables. 

a) Add a new title. The movie is “Interstellar Wars,” which is rated PG and 
classified as a science fiction movie. The release date is 07-JUL-77. The 
description is “Futuristic interstellar action movie. Can the rebels save the humans 
from the evil empire?” Be sure to add a title copy record for two copies. 

b) Enter two reservations. One reservation is for Carmen Velasquez, who wants to 
rent “Interstellar Wars.” The other is for Mark Quick-to-See, who wants to rent 
“Soda Gang.” 

 



Practice 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 26 

7) Make a modification to one of the tables. 

a) Run the lab_apcs_7a.sql script located in the 
/home/oracle/labs/sql1/labs folder, to add a PRICE column to the TITLE 
table to record the purchase price of the video. Verify your modifications. 

 

Title Price 

Willie and Christmas Too 25 

Alien Again 35 

The Glob 35 

My Day Off 35 

Miracles on Ice 30 

Soda Gang 35 

Interstellar Wars 29 

b) Create a script named lab_apcs_7b.sql that contains update statements that 
update each video with a price according to the preceding list. Run the commands 
in the script. 

Note: Have the TITLE_ID numbers available for this exercise. 

8) Create a report that contains each customer’s history of renting videos. Be sure to 
include the customer name, movie rented, dates of the rental, and duration of rentals. 
Total the number of rentals for all customers for the reporting period. Save the 
commands that generate the report in a script file named lab_apcs_8.sql. 

Note: Your results may be different. 

 

 



 

Oracle Database 11g: SQL Fundamentals I   AP - 27 

Practice Solutions 2-1 
1) Create the tables based on the following table instance charts. Choose the appropriate 

data types and be sure to add integrity constraints. 

a) Table name: MEMBER 

CREATE TABLE member    
     (member_id      NUMBER(10)  
         CONSTRAINT member_member_id_pk PRIMARY KEY, 
       last_name     VARCHAR2(25) 
         CONSTRAINT member_last_name_nn NOT NULL, 
       first_name    VARCHAR2(25), 
       address       VARCHAR2(100), 
       city          VARCHAR2(30), 
       phone         VARCHAR2(15), 
       join_date     DATE DEFAULT SYSDATE 
         CONSTRAINT member_join_date_nn NOT NULL); 

b) Table name: TITLE 

CREATE TABLE title 
       (title_id      NUMBER(10) 
         CONSTRAINT title_title_id_pk PRIMARY KEY, 
       title         VARCHAR2(60) 
         CONSTRAINT title_title_nn NOT NULL, 
       description   VARCHAR2(400) 
         CONSTRAINT title_description_nn NOT NULL, 
       rating        VARCHAR2(4) 
         CONSTRAINT title_rating_ck CHECK 
         (rating IN ('G', 'PG', 'R', 'NC17', 'NR')), 
       category      VARCHAR2(20)  
         CONSTRAINT title_category_ck CHECK 
         (category IN ('DRAMA', 'COMEDY', 'ACTION', 
         'CHILD', 'SCIFI', 'DOCUMENTARY')), 
       release_date   DATE); 

c) Table name: TITLE_COPY 

CREATE TABLE title_copy 
       (copy_id       NUMBER(10), 
       title_id      NUMBER(10) 
         CONSTRAINT title_copy_title_if_fk REFERENCES 
title(title_id), 
       status        VARCHAR2(15) 
         CONSTRAINT title_copy_status_nn NOT NULL 
         CONSTRAINT title_copy_status_ck CHECK (status IN     
         ('AVAILABLE', 'DESTROYED','RENTED', 'RESERVED')), 
       CONSTRAINT title_copy_copy_id_title_id_pk 
         PRIMARY KEY (copy_id, title_id)); 



Practice Solutions 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 28 

d) Table name: RENTAL 

CREATE TABLE rental 
      (book_date    DATE DEFAULT SYSDATE, 
       member_id     NUMBER(10) 
         CONSTRAINT rental_member_id_fk REFERENCES 
member(member_id), 
       copy_id      NUMBER(10), 
       act_ret_date DATE, 
       exp_ret_date DATE DEFAULT SYSDATE + 2, 
       title_id     NUMBER(10), 
       CONSTRAINT rental_book_date_copy_title_pk  
         PRIMARY KEY (book_date, member_id, copy_id,title_id), 
       CONSTRAINT rental_copy_id_title_id_fk  
         FOREIGN KEY (copy_id, title_id) 
         REFERENCES title_copy(copy_id, title_id)); 

e) Table name: RESERVATION 

CREATE TABLE reservation 
      (res_date      DATE, 
       member_id      NUMBER(10) 
         CONSTRAINT reservation_member_id REFERENCES 
member(member_id), 
       title_id      NUMBER(10) 
         CONSTRAINT reservation_title_id REFERENCES 
title(title_id), 
       CONSTRAINT reservation_resdate_mem_tit_pk PRIMARY KEY  
         (res_date, member_id, title_id)); 

2) Verify that the tables were created properly by checking in the Connections Navigator 
in SQL Developer. 

a) In the Connections Navigator, expand Connections > myconnection > Tables. 

3) Create sequences to uniquely identify each row in the MEMBER table and the TITLE 
table. 

a) Member number for the MEMBER table: Start with 101; do not allow caching of the 
values. Name the sequence MEMBER_ID_SEQ. 

CREATE SEQUENCE member_id_seq 
START WITH 101  
NOCACHE; 

b) Title number for the TITLE table: Start with 92; do not allow caching of the 
values. Name the sequence TITLE_ID_SEQ. 

CREATE SEQUENCE title_id_seq 
START WITH 92  
NOCACHE; 



Practice Solutions 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 29 

c) Verify the existence of the sequences in the Connections Navigator in SQL 
Developer. 

i) In the Connections Navigator, assuming that the myconnection node is 
expanded, expand Sequences. 

4) Add data to the tables. Create a script for each set of data to be added. 

a) Add movie titles to the TITLE table. Write a script to enter the movie 
information. Save the statements in a script named lab_apcs_4a.sql. Use the 
sequences to uniquely identify each title. Enter the release dates in the DD-MON-
YYYY format. Remember that single quotation marks in a character field must be 
specially handled. Verify your additions. 

INSERT INTO title(title_id, title, description, rating,    
                  category, release_date) 
VALUES  (title_id_seq.NEXTVAL, 'Willie and Christmas Too', 
         'All of Willie''s friends make a Christmas list for 
         Santa, but Willie has yet to add his own wish list.', 
         'G', 'CHILD', TO_DATE('05-OCT-1995','DD-MON-YYYY')) 
/ 
INSERT INTO title(title_id , title, description, rating, 
                  category, release_date) 
VALUES   (title_id_seq.NEXTVAL, 'Alien Again', 'Yet another 
          installment of science fiction history.  Can the 
          heroine save the planet from the alien life form?', 
          'R', 'SCIFI', TO_DATE( '19-MAY-1995','DD-MON-YYYY')) 
/ 
INSERT INTO title(title_id, title, description, rating, 
                  category, release_date) 
VALUES   (title_id_seq.NEXTVAL, 'The Glob', 'A meteor crashes 
          near a small American town and unleashes carnivorous 
          goo in this classic.', 'NR', 'SCIFI',  
          TO_DATE( '12-AUG-1995','DD-MON-YYYY')) 
/ 
INSERT INTO title(title_id, title, description, rating, 
                  category, release_date) 
VALUES    (title_id_seq.NEXTVAL, 'My Day Off', 'With a little 
           luck and a lot ingenuity, a teenager skips school 
for 
           a day in New York.', 'PG', 'COMEDY',  
           TO_DATE( '12-JUL-1995','DD-MON-YYYY')) 
/ 
INSERT INTO title(title_id, title, description, rating, 
                  category, release_date) 
VALUES    (title_id_seq.NEXTVAL, 'Miracles on Ice', 'A six-
year-old has       doubts about Santa Claus, but she discovers 
that miracles really do exist.', 'PG', 'DRAMA', 
           TO_DATE('12-SEP-1995','DD-MON-YYYY')) 
/ 
 
 



Practice Solutions 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 30 

INSERT INTO title(title_id, title, description, rating, 
                  category, release_date) 
VALUES    (title_id_seq.NEXTVAL, 'Soda Gang', 'After 
discovering a cache of drugs, a young couple find themselves 
pitted against a vicious gang.', 'NR', 'ACTION', TO_DATE('01-
JUN-1995','DD-MON-YYYY')) 
/ 
COMMIT 
/ 
SELECT  title 
FROM    title; 

 

b) Add data to the MEMBER table. Place the insert statements in a script named 
lab_apcs_4b.sql. Execute the commands in the script. Be sure to use the 
sequence to add the member numbers. 

SET VERIFY OFF 
INSERT INTO member(member_id, first_name, last_name, 
            address, city, phone, join_date) 
VALUES (member_id_seq.NEXTVAL, 'Carmen', 'Velasquez', 
        '283 King Street', 'Seattle', '206-899-6666', 
TO_DATE('08-MAR-1990', 
        'DD-MM-YYYY')) 
/ 
 
INSERT INTO member(member_id, first_name, last_name, 
            address, city, phone, join_date) 
VALUES (member_id_seq.NEXTVAL, 'LaDoris', 'Ngao', 
        '5 Modrany', 'Bratislava', '586-355-8882', 
TO_DATE('08-MAR-1990', 
        'DD-MM-YYYY')) 
/ 
 
INSERT INTO member(member_id, first_name, last_name, 
            address, city, phone, join_date) 
VALUES (member_id_seq.NEXTVAL, 'Midori', 'Nagayama', 
        '68 Via Centrale', 'Sao Paolo', '254-852-5764', 
TO_DATE('17-JUN-1991', 
        'DD-MM-YYYY')) 
/ 
 
INSERT INTO member(member_id, first_name, last_name, 
            address, city, phone, join_date) 
VALUES (member_id_seq.NEXTVAL, 'Mark', 'Quick-to-See', 
        '6921 King Way', 'Lagos', '63-559-7777', TO_DATE('07-
APR-1990', 
        'DD-MM-YYYY')) 
/ 
 
 
INSERT INTO member(member_id, first_name, last_name, 



Practice Solutions 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 31 

            address, city, phone, join_date) 
VALUES (member_id_seq.NEXTVAL, 'Audry', 'Ropeburn', 
        '86 Chu Street', 'Hong Kong', '41-559-87', 
TO_DATE('18-JAN-1991', 
        'DD-MM-YYYY')) 
/ 
 
INSERT INTO member(member_id, first_name, last_name, 
            address, city, phone, join_date) 
VALUES (member_id_seq.NEXTVAL, 'Molly', 'Urguhart', 
        '3035 Laurier', 'Quebec', '418-542-9988', TO_DATE('18-
JAN-1991', 
        'DD-MM-YYYY')); 
/ 
 
COMMIT 
SET VERIFY ON 

c) Add the following movie copies in the TITLE_COPY table: 

Note: Have the TITLE_ID numbers available for this exercise. 

INSERT INTO title_copy(copy_id, title_id, status) 
VALUES (1, 92, 'AVAILABLE') 
/ 
INSERT INTO title_copy(copy_id, title_id, status) 
VALUES (1, 93, 'AVAILABLE') 
/ 
INSERT INTO title_copy(copy_id, title_id, status) 
VALUES (2, 93, 'RENTED') 
/ 
INSERT INTO title_copy(copy_id, title_id, status) 
VALUES (1, 94, 'AVAILABLE') 
/ 
INSERT INTO title_copy(copy_id, title_id, status) 
VALUES (1, 95, 'AVAILABLE') 
/ 
INSERT INTO title_copy(copy_id, title_id,status) 
VALUES (2, 95, 'AVAILABLE') 
/ 
INSERT INTO title_copy(copy_id, title_id,status) 
VALUES (3, 95, 'RENTED') 
/ 
INSERT INTO title_copy(copy_id, title_id,status)  
VALUES (1, 96, 'AVAILABLE') 
/ 
INSERT INTO title_copy(copy_id, title_id,status) 
VALUES (1, 97, 'AVAILABLE') 
/ 



Practice Solutions 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 32 

d) Add the following rentals to the RENTAL table: 

Note: The title number may be different depending on the sequence number. 

INSERT INTO rental(title_id, copy_id, member_id, 
                   book_date, exp_ret_date, act_ret_date) 
VALUES (92, 1, 101, sysdate-3, sysdate-1, sysdate-2) 
/ 
INSERT INTO rental(title_id, copy_id, member_id, 
                   book_date, exp_ret_date, act_ret_date) 
VALUES (93, 2, 101, sysdate-1, sysdate-1, NULL) 
/ 
INSERT INTO rental(title_id, copy_id, member_id, 
                   book_date, exp_ret_date, act_ret_date) 
VALUES (95, 3, 102, sysdate-2, sysdate, NULL) 
/ 
INSERT INTO rental(title_id, copy_id, member_id, 
                   book_date, exp_ret_date,act_ret_date) 
VALUES (97, 1, 106, sysdate-4, sysdate-2, sysdate-2) 
/ 
COMMIT 
/ 

5) Create a view named TITLE_AVAIL to show the movie titles, the availability of each 
copy, and its expected return date if rented. Query all rows from the view. Order the 
results by title. 

Note: Your results may be different. 

CREATE VIEW title_avail AS 
  SELECT   t.title, c.copy_id, c.status, r.exp_ret_date 
  FROM     title t JOIN title_copy c  
  ON       t.title_id = c.title_id 
  FULL OUTER JOIN rental r 
  ON       c.copy_id = r.copy_id 
  AND      c.title_id = r.title_id; 
 
SELECT   * 
FROM     title_avail 
ORDER BY title, copy_id; 



Practice Solutions 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 33 

6) Make changes to data in the tables. 

a) Add a new title. The movie is “Interstellar Wars,” which is rated PG and 
classified as a science fiction movie. The release date is 07-JUL-77. The 
description is “Futuristic interstellar action movie. Can the rebels save the humans 
from the evil empire?” Be sure to add a title copy record for two copies. 

INSERT INTO title(title_id, title, description, rating, 
           category, release_date) 
VALUES (title_id_seq.NEXTVAL, 'Interstellar Wars', 
        'Futuristic interstellar action movie.  Can the 
         rebels save the humans from the evil empire?', 
        'PG', 'SCIFI', '07-JUL-77') 
/ 
INSERT INTO title_copy (copy_id, title_id, status) 
VALUES (1, 98, 'AVAILABLE') 
/ 
INSERT INTO title_copy (copy_id, title_id, status) 
VALUES (2, 98, 'AVAILABLE') 
/ 

b) Enter two reservations. One reservation is for Carmen Velasquez, who wants to 
rent “Interstellar Wars.” The other is for Mark Quick-to-See, who wants to rent 
“Soda Gang.” 

INSERT INTO reservation (res_date, member_id, title_id)         
VALUES (SYSDATE, 101, 98) 
/ 
INSERT INTO reservation (res_date, member_id, title_id) 
VALUES (SYSDATE, 104, 97) 
/ 

7) Make a modification to one of the tables. 

a) Run the lab_apcs_7a.sql script located in the 
/home/oracle/labs/sql1/labs folder, to add a PRICE column to the TITLE 
table to record the purchase price of the video. Verify your modifications. 

ALTER TABLE title 
ADD  (price NUMBER(8,2)); 
 
DESCRIBE title 



Practice Solutions 2-1 (continued) 

Oracle Database 11g: SQL Fundamentals I   AP - 34 

b) Create a script named lab_apcs_7b.sql that contains update statements that 
update each video with a price according to the list provided. Run the commands 
in the script. 

Note: Have the TITLE_ID numbers available for this exercise. 

SET ECHO OFF 
SET VERIFY OFF 
UPDATE title 
SET    price = &price 
WHERE  title_id = &title_id; 
SET VERIFY OFF 
SET ECHO OFF 

8) Create a report that contains each customer’s history of renting videos. Be sure to 
include the customer name, movie rented, dates of the rental, and duration of rentals. 
Total the number of rentals for all customers for the reporting period. Save the 
commands that generate the report in a script file named lab_apcs_8.sql. 

Note: Your results may be different. 

SELECT  m.first_name||' '||m.last_name MEMBER, t.title,  
        r.book_date, r.act_ret_date - r.book_date DURATION 
FROM  member m  
JOIN rental r 
ON   r.member_id = m.member_id 
JOIN title t 
ON   r.title_id = t.title_id 
ORDER BY member; 



Index



Oracle Database 11g: SQL Fundamentals I   Index - 2

A

Alias 1-3, 1-5, 1-9, 1-10, 1-16, 1-17, 1-18, 1-19, 1-20, 1-21, 

1-25, 1-29, 2-5, 2-6, 2-8, 2-23, 2-24, 2-38, 4-25, 5-14, 5-27, 

6-7, 6-14, 6-16, 6-24, 6-36, 8-28, 10-33, C-8, F-8, F-10, F-11, 

F-15, F-21, F-22

ALL Operator 7-19, 8-3, 8-6, 8-7, 8-12, 8-16, 8-17, 8-18, 8-21, 

8-24, 8-27, 8-29, 8-30

ALTER TABLE Statement 10-35, 10-36

Alternative Quote (q) Operator 1-23

American National Standards Institute 4-4, 6-5, I-30

Ampersand Substitution 2-2, 2-29, 2-30, 2-33, 2-38, 2-39, 3-13

AND Operator 2-16, 2-21, F-12

ANY Operator 7-3, 7-9, 7-18, 7-21

Arithmetic Expressions 1-3, 1-10, 1-11, 1-15, 1-16, 1-19, 1-20, 

1-25, 2-5

Arithmetic Operators 1-11, 1-12, 2-20, 3-25, 3-26, 3-32

Attributes I-22, I-23, I-24

AVG 5-3, 5-5, 5-7, 5-8, 5-11, 5-12, 5-15, 5-16, 5-20, 5-23, 

5-25, 5-26, 5-28, 7-13

B

BETWEEN Operator 2-10

BI Publisher I-14

C

Cartesian Product 6-2, 6-3, 6-6, 6-8, 6-19, 6-22, 6-25, 6-31, 

6-32, 6-33, 6-34, 6-35, 6-36, F-2, F-4, F-5, F-22

CASE Expression 4-32, 4-37, 4-38, 4-39, 4-40, 4-44

Character strings 1-3, 1-10, 1-16, 1-19, 1-20, 1-21, 1-22, 1-25, 

2-7, 2-16, 3-11, 3-13, 4-14, 4-17, 4-43

CHECK Constraint 9-8, 10-3, 10-6, 10-11, 10-15, 10-27, 10-31, 10-34, 

10-37

COALESCE Function 4-33, 4-34, 4-35

Column Alias 1-3, 1-9, 1-10, 1-16, 1-17, 1-18, 1-19, 1-21, 1-25, 

1-29, 2-6, 2-24, 4-25, 5-14, 5-27, 6-7, 10-33, F-8

Comparison Operators 2-8, 2-9, 7-10, 7-17, 9-15, 9-21

Concatenation Operator 1-3, 1-10, 1-16, 1-19, 1-20, 1-25, 2-20



Oracle Database 11g: SQL Fundamentals I   Index - 3

C

Constraints 1-14, 9-4, 9-8, 9-20, 9-24, 10-2, 10-3, 10-6, 10-11, 

10-13, 10-15, 10-16, 10-17, 10-18, 10-19, 10-20, 10-21, 10-22, 10-25, 10-27, 

10-29, 10-30, 10-31, 10-32, 10-34, 10-37, 10-39, 10-40, C-10, E-6, I-16, 

I-39

Conversion Functions 3-7, 3-9, 3-11, 3-12, 3-28, 4-1, 4-2, 

4-4, 4-9, 4-44, 8-25, I-5

COUNT Function 5-9

CREATE TABLE Statement 9-12, 10-3, 10-6, 10-7, 10-11, 10-15, 10-31, 

10-32, 10-34, 10-37, 10-40, 10-41

Creating a Database Connection C-7, C-8, C-9

Cross Joins 6-5, 6-34, 6-36

CURRENT_DATE 3-24, 9-9

CURRVAL 10-9, 10-27

D

Data Types 1-11, 1-26, 1-27, 3-4, 3-33, 4-4, 4-29, 4-31, 4-44, 

5-6, 5-8, 6-9, 6-11, 8-13, 8-19, 8-22, 9-8, 9-12, 10-2, 10-3, 

10-6, 10-11, 10-12, 10-13, 10-14, 10-15, 10-31, 10-34, 10-37, 10-40, C-11, 

D-7, E-14, I-9, I-16

Database 1-2, 1-4, 1-14, 1-15, 1-29, 2-2, 2-7, 3-4, 3-5, 

3-10, 3-12, 3-16, 3-21, 3-24, 3-25, 3-26, 4-4, 4-9, 4-28, 5-15, 

5-18, 5-28, 6-2, 6-6, 6-36, 7-8, 9-3, 9-4, 9-9, 9-13, 9-15, 

9-19, 9-21, 9-25, 9-26, 9-27, 9-31, 9-33, 9-34, 9-39, 9-40, 9-41, 

9-42, 9-43, 9-44, 9-45, 9-47, 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 

10-8, 10-10, 10-11, 10-14, 10-15, 10-17, 10-31, 10-33, 10-34, 10-36, 10-37, 

10-38, 10-40, 10-41, B-2, C-2, C-3, C-4, C-5, C-6, C-7, C-8, 

C-9, C-10, C-12, C-13, C-15, C-16, C-17, C-19, C-26, C-29, C-31, 

D-3, D-4, D-5, D-6, D-15, D-17, D-18, E-2, E-4, E-5, E-6, 

E-8, E-11, E-15, E-18, F-2, F-7, F-10, F-22, I-2, I-3, I-4, 

I-8, I-9, I-10, I-11, I-12, I-13, I-14, I-15, I-16, I-17, I-18, 

I-19, I-20, I-22, I-27, I-28, I-29, I-30, I-31, I-32, I-33, I-34, 

I-36, I-37, I-38, I-39, I-40

Database Transactions 9-3, 9-13, 9-19, 9-25, 9-26, 9-27, 9-39, 

9-42



Oracle Database 11g: SQL Fundamentals I   Index - 4

D

Date 1-9, 1-11, 1-20, 1-21, 2-7, 2-8, 2-11, 2-12, 2-23, 2-24, 

2-25, 2-28, 2-31, 3-2, 3-3, 3-4, 3-5, 3-7, 3-8, 3-15, 3-17, 

3-18, 3-20, 3-21, 3-22, 3-23, 3-24, 3-25, 3-26, 3-27, 3-28, 3-29, 

3-30, 3-32, 3-33, 4-2, 4-3, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 

4-11, 4-12, 4-13, 4-14, 4-15, 4-16, 4-20, 4-21, 4-22, 4-23, 4-25, 

4-27, 4-29, 4-36, 4-43, 4-44, 4-45, 5-6, 5-8, 5-28, 8-8, 8-10, 

9-2, 9-3, 9-4, 9-7, 9-9, 9-10, 9-13, 9-14, 9-15, 9-16, 9-17, 

9-18, 9-19, 9-25, 9-29, 9-30, 9-35, 9-39, 9-40, 9-41, 9-42, 9-43, 

9-44, 9-45, 9-47, 9-48, 10-9, 10-10, 10-12, 10-14, 10-16, 10-20, 10-22, 

10-25, 10-26, 10-27, 10-28, 10-29, 10-33, 10-36, 10-38, 10-39, B-3, C-10, 

D-17, E-14, I-4, I-9, I-16, I-17, I-18, I-22, I-31, I-34

Datetime Data Types 10-14

DBMS 9-43, D-15, D-17, I-2, I-17, I-18, I-25, I-27, I-39

DECODE Function 4-37, 4-39, 4-40, 4-41, 4-42, 4-44, 5-6

DEFAULT Option 10-3, 10-6, 10-9, 10-11, 10-15, 10-31, 10-34, 10-37

DELETE Statement 9-3, 9-13, 9-19, 9-21, 9-22, 9-23, 9-24, 9-25, 

9-39, 9-40, 9-42

DESCRIBE Command 1-3, 1-10, 1-16, 1-19, 1-25, 1-26, 1-27, 9-8, 

10-10, 10-33, C-11, D-7

DISTINCT Keyword 1-3, 1-10, 1-16, 1-19, 1-24, 1-25, 5-3, 5-10, 

5-12, 5-25

DUAL Table 3-17

Duplicate Rows 1-24, 5-9, 8-6, 8-13, 8-16, 8-17, 8-30, I-27

E

Entity Relationship B-3, I-21, I-22, I-23

Equijoins 6-2, 6-3, 6-8, 6-12, 6-19, 6-22, 6-23, 6-24, 6-25, 

6-35, 6-36, F-2, F-9, F-10, F-11, F-14, F-15, F-22

Execute SQL C-2, C-15, C-17, C-31, D-2, D-5, D-18, E-2, E-18

Execute Statement icon 1-8, 6-16, 10-41, F-10

Explicit Data Type Conversion 4-3, 4-4, 4-7, 4-8, 4-9, 4-10, 

4-23, 4-27, 4-36

F

FOR UPDATE clause 9-3, 9-13, 9-19, 9-25, 9-39, 9-42, 9-43, 9-44, 

9-45, 9-47



Oracle Database 11g: SQL Fundamentals I   Index - 5

F

Format Model 3-28, 3-30, 4-11, 4-12, 4-14, 4-15, 4-16, 4-19, 4-20, 

4-43

Functions 2-5, 2-7, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 

3-8, 3-9, 3-10, 3-11, 3-12, 3-13, 3-14, 3-15, 3-16, 3-17, 3-18, 

3-20, 3-24, 3-27, 3-28, 3-29, 3-30, 3-31, 3-32, 3-33, 4-1, 4-2, 

4-3, 4-4, 4-7, 4-9, 4-10, 4-20, 4-21, 4-23, 4-24, 4-25, 4-26, 

4-27, 4-28, 4-36, 4-44, 4-45, 5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 

5-7, 5-8, 5-11, 5-12, 5-13, 5-14, 5-15, 5-19, 5-20, 5-22, 5-25, 

5-26, 5-27, 5-28, 5-29, 7-3, 7-9, 7-12, 7-16, 7-21, 7-25, 8-25, 

9-9, 10-9, 10-27, C-5, C-6, C-23, C-24, C-25, E-8, E-15, I-4, 

I-5

G

GROUP BY Clause 5-2, 5-3, 5-12, 5-13, 5-14, 5-15, 5-16, 5-18, 

5-19, 5-22, 5-23, 5-25, 5-26, 5-27, 5-28, 7-14

Group Functions 3-5, 5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-11, 

5-12, 5-13, 5-14, 5-15, 5-19, 5-20, 5-22, 5-25, 5-26, 5-27, 5-28, 

5-29, 7-3, 7-9, 7-12, 7-16, 7-21, 7-25, I-5

Group Functions in a Subquery 7-3, 7-9, 7-12, 7-16, 7-21

H

HAVING Clause 5-2, 5-3, 5-12, 5-20, 5-21, 5-22, 5-23, 5-24, 

5-25, 5-28, 5-29, 7-3, 7-5, 7-9, 7-13, 7-16, 7-21, 7-25

I

Implicit Data Type Conversion 4-4, 4-5, 4-6

IN Operator 2-11, 7-22, F-17, F-18

Index 10-4, 10-8, 10-10, 10-22, 10-23, 10-36, 10-38, C-4, C-10, E-6, 

I-38

INSERT Statement 9-3, 9-6, 9-8, 9-12, 9-13, 9-19, 9-25, 9-39, 

9-42, 10-10, 10-18

International Standards Organization I-31

INTERSECT Operator 8-3, 8-4, 8-5, 8-7, 8-12, 8-18, 8-19, 8-20, 

8-21, 8-24, 8-27, 8-30, 8-31

INTERVAL YEAR TO MONTH 10-14

J

Java C-4, C-8, E-3, E-12, E-14, E-15, E-16, I-9, I-12, I-39



Oracle Database 11g: SQL Fundamentals I   Index - 6

J

Joining Tables 6-6, 6-27, 6-37, F-7, F-23

K

Keywords 1-5, 1-8, 2-23, 6-9, 10-25, 10-26, C-22, D-4

L

LENGTH 3-9, 3-10, 3-13, 3-14, 3-32, 4-32, 6-7, 8-6, 10-7, 10-12, 

10-18, D-15, F-8

LIKE Operator 2-12

Literal 1-3, 1-10, 1-14, 1-16, 1-19, 1-21, 1-22, 1-23, 1-25, 

2-5, 2-12, 2-13, 3-13, 4-11, 4-14, 4-31, 4-32, 4-38, 8-26, 10-9

LPAD 3-9, 3-13

M

MAX 5-3, 5-4, 5-5, 5-7, 5-8, 5-12, 5-21, 5-23, 5-25, 5-26, 

5-28, 7-18, 7-19, B-2, B-3, I-10, I-34

MIN 1-8, 1-24, 1-30, 2-7, 2-20, 2-27, 3-13, 3-19, 3-21, 3-23, 

3-33, 4-31, 4-35, 4-42, 5-3, 5-5, 5-7, 5-8, 5-12, 5-14, 5-25, 

5-28, 6-7, 6-12, 6-37, 7-4, 7-6, 7-12, 7-13, 7-14, 7-17, 7-18, 

7-19, 7-24, 8-3, 8-4, 8-5, 8-6, 8-7, 8-12, 8-13, 8-14, 8-16, 

8-17, 8-18, 8-21, 8-22, 8-23, 8-24, 8-27, 8-30, 8-31, 9-9, 9-16, 

9-20, 9-31, 9-38, 9-43, 10-3, 10-5, 10-6, 10-7, 10-11, 10-14, 10-15, 

10-17, 10-27, 10-31, 10-34, 10-37, B-2, B-3, C-7, C-8, C-23, C-25, 

C-26, C-30, D-3, D-6, D-9, D-17, F-7, F-8, F-9, F-13, F-23, 

I-3, I-4, I-8, I-10, I-12, I-13, I-15, I-16, I-20, I-27, I-28, 

I-29, I-33, I-34, I-36, I-39, I-40

MINUS Operator 8-3, 8-5, 8-7, 8-12, 8-18, 8-21, 8-22, 8-23, 

8-24, 8-27, 8-30, 8-31

MOD Function 3-19

N

Naming 10-3, 10-5, 10-6, 10-11, 10-15, 10-17, 10-31, 10-34, 10-37

NEXTVAL 10-9, 10-27

Nonequijoins 6-2, 6-3, 6-8, 6-19, 6-22, 6-23, 6-24, 6-25, 6-35, 

6-36, F-2, F-14, F-15, F-22

NOT NULL Constraint 1-26, 10-18, 10-20, 10-21, 10-32

NOT Operator 2-3, 2-18, 2-19, 2-22, 2-26, 2-34, 2-38, 7-19

NULL Conditions 2-3, 2-14



Oracle Database 11g: SQL Fundamentals I   Index - 7

N

Null Value 1-3, 1-10, 1-14, 1-15, 1-16, 1-19, 1-20, 1-25, 2-8, 

2-14, 2-23, 2-24, 4-28, 4-29, 4-30, 4-31, 4-32, 4-40, 5-3, 5-6, 

5-9, 5-10, 5-11, 5-12, 5-25, 7-3, 7-9, 7-15, 7-16, 7-21, 7-22, 

7-23, 8-13, 8-19, 9-8, 10-9, 10-20, 10-23, E-10, I-28

Null Values 1-3, 1-10, 1-14, 1-15, 1-16, 1-19, 1-20, 1-25, 2-23, 

2-24, 4-28, 4-30, 5-3, 5-6, 5-9, 5-10, 5-11, 5-12, 5-25, 7-3, 

7-9, 7-15, 7-16, 7-21, 7-22, 7-23, 8-13, 8-19, 9-8, 10-9, 10-20, 

E-10

NULLIF Function 4-32

Number Functions 3-3, 3-7, 3-8, 3-15, 3-16, 3-20, 3-27, 3-28, 

4-3, 4-10, 4-23, 4-27, 4-36

NVL Function 4-29, 4-30, 4-33, 4-44, 5-11

NVL2 Function 4-31

O

Object Relational I-2, I-16, I-17

OLTP I-11, I-16

ON clause 6-3, 6-5, 6-6, 6-8, 6-15, 6-16, 6-17, 6-18, 6-19, 

6-21, 6-22, 6-25, 6-27, 6-31, 8-17

ON DELETE CASCADE 10-26

ON DELETE SET NULL 10-26

OR Operator 2-3, 2-15, 2-17, 2-19, 2-22, 2-26, 2-34, F-18

Oracle Database 11g 3-24, 7-8, 10-10, 10-14, 10-36, 10-38, C-4, 

I-2, I-3, I-4, I-8, I-9, I-10, I-11, I-14, I-15, I-29, I-32, 

I-33, I-36, I-37, I-38, I-39

Oracle Enterprise Manager Grid Control I-13, I-39

Oracle Fusion Middleware I-12, I-13, I-39

Oracle Server 1-12, 2-11, 2-13, 2-23, 4-4, 4-5, 4-6, 4-19, 

4-20, 4-38, 5-22, 5-28, 6-7, 6-24, 7-13, 7-17, 7-25, 8-4, 8-6, 

9-4, 9-8, 9-26, 9-32, 9-33, 9-38, 9-41, 9-43, 9-47, 10-5, 10-16, 

10-17, 10-22, 10-23, D-3, D-13, F-8, F-15, I-2, I-16, I-39

Oracle SQL Developer C-2, C-3, C-4, I-2, I-32, I-40

ORDBMS I-2, I-39



Oracle Database 11g: SQL Fundamentals I   Index - 8

O

Order 1-7, 1-13, 2-2, 2-3, 2-11, 2-19, 2-20, 2-22, 2-23, 2-24, 

2-25, 2-26, 2-28, 2-32, 2-33, 2-34, 2-38, 2-39, 3-6, 4-25, 5-6, 

5-14, 5-15, 5-16, 5-17, 5-18, 5-22, 5-24, 5-27, 5-28, 8-2, 8-3, 

8-4, 8-5, 8-6, 8-7, 8-12, 8-13, 8-15, 8-17, 8-18, 8-19, 8-21, 

8-24, 8-27, 8-28, 8-29, 8-30, 9-7, 9-8, 9-43, 9-44, 9-45, 10-13, 

B-2, C-26, I-14, I-22, I-27

ORDER BY Clause 2-3, 2-19, 2-22, 2-23, 2-24, 2-25, 2-26, 2-28, 

2-34, 2-38, 2-39, 3-6, 5-15, 5-16, 5-18, 5-28, 8-3, 8-5, 8-7, 

8-12, 8-18, 8-21, 8-24, 8-27, 8-28, 8-29, 8-30, 10-13

P

PRIMARY KEY Constraint 9-8, 10-19, 10-20, 10-23

Projection 1-4

Pseudocolumns 10-27

Q

q operator 1-23

Query 1-4, 1-8, 1-17, 1-18, 1-21, 1-24, 2-2, 2-5, 2-23, 2-25, 

2-27, 2-31, 2-33, 3-2, 3-6, 3-26, 3-33, 4-21, 4-35, 5-15, 6-6, 

6-7, 6-14, 6-16, 6-24, 6-26, 6-28, 6-29, 6-30, 7-3, 7-4, 7-5, 

7-6, 7-7, 7-8, 7-9, 7-10, 7-11, 7-12, 7-13, 7-14, 7-15, 7-16, 

7-17, 7-18, 7-19, 7-20, 7-21, 7-22, 7-23, 7-24, 7-25, 7-26, 8-2, 

8-5, 8-6, 8-13, 8-17, 8-19, 8-20, 8-22, 8-25, 8-26, 8-28, 8-29, 

8-30, 9-12, 9-15, 9-17, 9-23, 9-33, 9-43, 9-44, 9-47, 10-3, 10-6, 

10-10, 10-11, 10-13, 10-15, 10-27, 10-31, 10-32, 10-33, 10-34, 10-37, 10-40, 

10-41, C-18, C-27, D-3, D-5, D-13, D-14, D-15, D-16, D-17, F-7, 

F-8, F-10, F-15, F-16, F-19, I-4, I-16, I-30

R

RDBMS 9-43, I-2, I-18, I-25, I-27, I-39

Read Consistency 9-3, 9-13, 9-19, 9-25, 9-33, 9-39, 9-40, 9-41, 

9-42

Read-only tables 10-3, 10-6, 10-11, 10-15, 10-31, 10-34, 10-36, 10-37

REFERENCES 1-14, 9-31, 10-24, 10-25, 10-26, 10-27, 10-28, C-5, C-6, 

C-10, C-19, C-29



Oracle Database 11g: SQL Fundamentals I   Index - 9

R

Relational Database 9-43, I-2, I-3, I-4, I-8, I-15, I-16, 

I-18, I-19, I-27, I-28, I-29, I-30, I-31, I-33, I-36, I-39

REPLACE 2-36, 3-9, 3-13, D-12, D-16

ROUND and TRUNC Functions 3-30, 3-32

ROUND Function 3-17, 3-18, 4-26

RPAD 3-9, 3-13

RR Date Format 3-22, 3-23, 4-22

Rules of Precedence 1-12, 1-13, 2-3, 2-19, 2-20, 2-21, 2-22, 

2-26, 2-34

S

Schema 10-2, 10-5, 10-7, 10-8, 10-18, 10-28, 10-40, B-2, C-3, C-5, 

C-7, C-8, C-10, C-13, E-5, E-6, I-2, I-3, I-4, I-6, I-8, 

I-15, I-29, I-33, I-34, I-36, I-40

SELECT Statement 1-1, 1-2, 1-3, 1-4, 1-5, 1-7, 1-10, 1-16, 

1-19, 1-21, 1-22, 1-25, 1-28, 1-29, 2-6, 2-9, 2-10, 2-12, 2-21, 

2-23, 2-28, 2-32, 2-35, 2-38, 2-39, 3-2, 3-12, 4-2, 4-44, 5-9, 

5-15, 5-16, 5-17, 5-18, 5-19, 5-20, 6-2, 6-7, 7-2, 7-5, 7-8, 

7-10, 7-11, 7-25, 7-26, 8-3, 8-6, 8-7, 8-12, 8-18, 8-19, 8-20, 

8-21, 8-22, 8-24, 8-25, 8-26, 8-27, 9-3, 9-13, 9-19, 9-22, 9-25, 

9-33, 9-39, 9-40, 9-41, 9-42, 9-43, 9-44, 9-47, 10-32, D-2, F-2, 

F-7, F-8, I-4, I-5

Selection 1-4, 2-4, E-12

Self join 6-35

Sequences 2-24, 10-8

Set operators 8-1, 8-2, 8-3, 8-4, 8-5, 8-6, 8-7, 8-12, 

8-18, 8-21, 8-24, 8-27, 8-31, I-5

SET VERIFY ON 2-36

Sorting 2-1, 2-3, 2-19, 2-22, 2-24, 2-25, 2-26, 2-34, 2-38, 

2-39, I-5



Oracle Database 11g: SQL Fundamentals I   Index - 10

S

SQL Developer 1-6, 1-8, 1-9, 1-14, 1-17, 1-26, 2-28, 2-29, 

2-30, 2-31, 2-33, 2-35, 2-36, 6-16, 9-4, 9-21, 9-27, 9-31, 9-32, 

9-43, 10-9, 10-41, C-1, C-2, C-3, C-4, C-5, C-6, C-7, C-9, 

C-10, C-11, C-13, C-17, C-22, C-23, C-25, C-26, C-27, C-28, C-29, 

C-30, C-31, F-10, I-2, I-7, I-9, I-32, I-37, I-40

subquery 7-3, 7-4, 7-5, 7-6, 7-7, 7-8, 7-9, 7-10, 7-11, 

7-12, 7-13, 7-14, 7-15, 7-16, 7-17, 7-18, 7-19, 7-20, 7-21, 7-22, 

7-23, 7-24, 7-25, 9-12, 9-15, 9-17, 9-23, 10-3, 10-6, 10-11, 10-13, 

10-15, 10-31, 10-32, 10-33, 10-34, 10-37, 10-40

Substitution Variables 2-3, 2-19, 2-22, 2-26, 2-27, 2-28, 2-31, 

2-32, 2-34, 2-36, 2-38, 2-39, 9-11, C-16

SUBSTR 3-9, 3-10, 3-13, 3-14, 3-32, 4-25

Synonym 1-24, 1-26, 7-18, 10-4, 10-8, 10-38, D-7, I-23, I-24

SYSDATE Function 3-23, 3-24, 9-9

T

TO_CHAR 4-2, 4-3, 4-7, 4-8, 4-9, 4-10, 4-11, 4-16, 4-17, 

4-18, 4-19, 4-22, 4-23, 4-25, 4-26, 4-27, 4-34, 4-36, 4-44, 4-45, 

8-25

TO_DATE 4-2, 4-3, 4-7, 4-8, 4-9, 4-10, 4-20, 4-21, 4-22, 

4-23, 4-27, 4-36, 4-44, 4-45, 9-10

TO_NUMBER 4-2, 4-3, 4-7, 4-8, 4-9, 4-10, 4-20, 4-21, 4-23, 

4-27, 4-36, 4-43, 4-44

Transaction 9-2, 9-3, 9-4, 9-13, 9-19, 9-25, 9-26, 9-27, 9-29, 

9-30, 9-31, 9-32, 9-33, 9-34, 9-38, 9-39, 9-41, 9-42, 9-48, 10-38, 

C-16, I-11, I-31

TRIM 3-9, 3-10, 3-13

TRUNC 3-16, 3-18, 3-28, 3-30, 3-32, 4-42, 9-3, 9-13, 9-19, 9-24, 

9-25, 9-39, 9-42, 9-46, 9-47, I-31

U

UNION ALL 8-3, 8-4, 8-5, 8-6, 8-7, 8-12, 8-16, 8-17, 8-18, 

8-21, 8-24, 8-27, 8-29, 8-30

UNION Operator 8-13, 8-14, 8-15, 8-25, 8-26, 8-30, 8-31

UNIQUE Constraint 10-21, 10-22

Unique Identifier I-23, I-24



Oracle Database 11g: SQL Fundamentals I   Index - 11

U

UPDATE Statement 9-3, 9-13, 9-15, 9-16, 9-17, 9-18, 9-19, 9-25, 

9-39, 9-42, 9-43, 10-36

USING Clause 6-3, 6-5, 6-8, 6-11, 6-13, 6-14, 6-17, 6-19, 6-22, 

6-25, 6-31

Using Snippets C-23, C-24

V

VARIANCE 5-5, 5-8, 5-28

VERIFY Command 2-3, 2-19, 2-22, 2-26, 2-34, 2-36

Views 10-8, 10-10, 10-38, C-10, E-6, E-13

W

WHERE Clause 2-3, 2-4, 2-5, 2-6, 2-7, 2-8, 2-9, 2-11, 2-15, 

2-19, 2-22, 2-26, 2-27, 2-28, 2-31, 2-32, 2-34, 2-37, 2-38, 2-39, 

3-12, 5-9, 5-14, 5-15, 5-18, 5-20, 5-21, 5-22, 5-27, 5-28, 6-10, 

6-14, 6-15, 6-18, 6-36, 7-2, 7-5, 7-13, 7-14, 7-15, 7-23, 8-5, 

9-15, 9-16, 9-22, F-4, F-7, F-10, F-12, F-17, F-21, F-22

X

XML C-7, C-9, C-26, C-27, C-30, E-3, E-12, I-9, I-14, I-39




	Contents
	Lesson 9: Manipulating Data
	Objectives
	Lesson Agenda
	Data Manipulation Language
	Adding a New Row to a Table
	INSERT Statement Syntax
	Inserting New Rows
	Inserting Rows with Null Values
	Inserting Special Values
	Inserting Specific Date and Time Values
	Creating a Script
	Copying Rows from Another Table
	Lesson Agenda
	Changing Data in a Table
	UPDATE Statement Syntax
	Updating Rows in a Table
	Updating Two Columns with a Subquery
	Updating Rows Based on Another Table
	Lesson Agenda
	Removing a Row from a Table
	DELETE Statement
	Deleting Rows from a Table
	Deleting Rows Based on Another Table
	TRUNCATE Statement
	Lesson Agenda
	Database Transactions
	Database Transactions: Start and End
	Advantages of COMMIT and ROLLBACK Statements
	Explicit Transaction Control Statements
	Rolling Back Changes to a Marker
	Implicit Transaction Processing
	State of the Data Before COMMIT or ROLLBACK
	State of the Data After COMMIT
	Committing Data
	State of the Data After ROLLBACK
	State of the Data After ROLLBACK: Example
	Statement-Level Rollback
	Lesson Agenda
	Read Consistency
	Implementing Read Consistency
	Lesson Agenda
	FOR UPDATE Clause in a SELECT Statement
	FOR UPDATE Clause: Examples
	Quiz
	Summary
	Practice 9: Overview

	Lesson 10: Using DDL Statements to Create and Manage Tables
	Objectives
	Lesson Agenda
	Database Objects
	Naming Rules
	Lesson Agenda
	CREATE TABLE Statement
	Referencing Another User's Tables
	DEFAULT Option
	Creating Tables
	Lesson Agenda
	Data Types
	Datetime Data Types
	Lesson Agenda
	Including Constraints
	Constraint Guidelines
	Defining Constraints
	NOT NULL Constraint
	UNIQUE Constraint
	PRIMARY KEY Constraint
	FOREIGN KEY Constraint
	FOREIGN KEY Constraint: Keywords
	CHECK Constraint
	CREATE TABLE: Example
	Violating Constraints
	Lesson Agenda
	Creating a Table Using a Subquery
	Lesson Agenda
	ALTER TABLE Statement
	Read-Only Tables
	Lesson Agenda
	Dropping a Table
	Quiz
	Summary
	Practice 10: Overview

	Lesson 11: Creating Other Schema Objects
	Objectives
	Lesson Agenda
	Database Objects
	What Is a View?
	Advantages of Views
	Simple Views and Complex Views
	Creating a View
	Retrieving Data from a View
	Modifying a View
	Creating a Complex View
	Rules for Performing DML Operations on a View
	Using the WITH CHECK OPTION Clause
	Denying DML Operations
	Removing a View
	Practice 11: Overview of Part 1
	Lesson Agenda
	Sequences
	CREATE SEQUENCE Statement: Syntax
	Creating a Sequence
	NEXTVAL and CURRVAL Pseudocolumns
	Using a Sequence
	Caching Sequence Values
	Modifying a Sequence
	Guidelines for Modifying a Sequence
	Lesson Agenda
	Indexes
	How Are Indexes Created?
	Creating an Index
	Index Creation Guidelines
	Removing an Index
	Lesson Agenda
	Synonyms
	Creating a Synonym for an Object
	Creating and Removing Synonyms
	Quiz
	Summary
	Practice 11: Overview of Part 2

	Appendix A: Practices and Solutions
	Practices for Lesson I
	Practice I-1: Introduction
	Practice Solutions I-1: Introduction
	Practices for Lesson 1
	Practice 1-1: Retrieving Data Using the SQL SELECT Statement
	Practice Solutions 1-1: Retrieving Data Using the SQL SELECT Statement
	Practices for Lesson 2
	Practice 2-1: Restricting and Sorting Data
	Practice Solutions 2-1: Restricting and Sorting Data
	Practices for Lesson 3
	Practice 3-1: Using Single-Row Functions to Customize Output
	Practice Solutions 3-1: Using Single-Row Functions to Customize Output
	Practices for Lesson 4
	Practice 4-1: Using Conversion Functions and Conditional Expressions
	Practice Solutions 4-1: Using Conversion Functions and Conditional Expressions
	Practices for Lesson 5
	Practice 5-1: Reporting Aggregated Data Using the Group Functions
	Practice Solutions 5-1: Reporting Aggregated Data Using the Group Functions
	Practices for Lesson 6
	Practice 6-1: Displaying Data from Multiple Tables Using Joins
	Practice Solutions 6-1: Displaying Data from Multiple Tables Using Joins
	Practices for Lesson 7
	Practice 7-1: Using Subqueries to Solve Queries
	Practice Solutions 7-1: Using Subqueries to Solve Queries
	Practices for Lesson 8
	Practice 8-1: Using the Set Operators
	Practice Solutions 8-1: Using the Set Operators
	Practices for Lesson 9
	Practice 9-1: Manipulating Data
	Practice Solutions 9-1: Manipulating Data
	Practices for Lesson 10
	Practice 10-1: Using DDL Statements to Create and Manage Tables
	Practice Solutions 10-1: Using DDL Statements to Create and Manage Tables
	Practices for Lesson 11
	Practice 11-1: Creating Other Schema Objects
	Practice Solutions 11-1: Creating Other Schema Objects
	Practices for Appendix F
	Practice F-1: Oracle Join Syntax
	Practice Solutions F-1: Oracle Join Syntax

	Appendix B: Table Descriptions
	Schema Description
	HR Entity Relationship Diagram
	Human Resources (HR) Table Descriptions

	Appendix C: Using SQL Developer
	Objectives
	What Is Oracle SQL Developer?
	Specifications of SQL Developer
	SQL Developer 1.5 Interface
	Creating a Database Connection
	Browsing Database Objects
	Displaying the Table Structure
	Browsing Files
	Creating a Schema Object
	Creating a New Table: Example
	Using the SQL Worksheet
	Executing SQL Statements
	Saving SQL Scripts
	Executing Saved Script Files: Method 1
	Executing Saved Script Files: Method 2
	Formatting the SQL Code
	Using Snippets
	Using Snippets: Example
	Debugging Procedures and Functions
	Database Reporting
	Creating a User-Defined Report
	Search Engines and External Tools
	Setting Preferences
	Resetting the SQL Developer Layout
	Summary

	Appendix D: Using SQL*Plus
	Objectives
	SQL and SQL*Plus Interaction
	SQL Statements Versus SQL*Plus Commands
	Overview of SQL*Plus
	Logging In to SQL*Plus
	Displaying the Table Structure
	SQL*Plus Editing Commands
	Using LIST, n, and APPEND
	Using the CHANGE Command
	SQL*Plus File Commands
	Using the SAVE, START Commands
	SERVEROUTPUT Command
	Using the SQL*Plus SPOOL Command
	Using the AUTOTRACE Command
	Summary

	Appendix E: Using JDeveloper
	Objectives
	Oracle JDeveloper
	Database Navigator
	Creating Connection
	Browsing Database Objects
	Executing SQL Statements
	Creating Program Units
	Compiling
	Running a Program Unit
	Dropping a Program Unit
	Structure Window
	Editor Window
	Application Navigator
	Deploying Java Stored Procedures
	Publishing Java to PL/SQL
	How Can I Learn More About JDeveloper 11g?
	Summary

	Appendix F: Oracle Join Syntax
	Objectives
	Obtaining Data from Multiple Tables
	Cartesian Products
	Generating a Cartesian Product
	Types of Oracle-Proprietary Joins
	Joining Tables Using Oracle Syntax
	Qualifying Ambiguous Column Names
	Equijoins
	Retrieving Records with Equijoins
	Retrieving Records with Equijoins: Example
	Additional Search Conditions Using the AND Operator
	Joining More than Two Tables
	Nonequijoins
	Retrieving Records with Nonequijoins
	Returning Records with No Direct Match with Outer Joins
	Outer Joins: Syntax
	Using Outer Joins
	Outer Join: Another Example
	Joining a Table to Itself
	Self-Join: Example
	Summary
	Practice F: Overview

	Appendix AP: Additional Practices and Solutions
	Additional Practices
	Practice 1-1
	Practice Solutions 1-1
	Case Study
	Practice 2-1
	Practice Solutions 2-1

	Index




